Tunable Interaction-Induced Localization of Surface Electrons in Antidot Nanostructured Bi$_2$Te$_3$ Thin Films

Hong-Chao Liu,†,# Hai-Zhou Lu,†,# Hong-Tao He,†,§ Baikui Li,† Shi-Guang Liu,† Qing Lin He,† Gan Wang,†,§ Iam Keong Sou,† Shun-Qing Shen,‡,* and Jiannong Wang†,*

†Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; ‡Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China; and §Department of Physics, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China. #H.-C. Liu and H.-Z. Lu contributed equally to this work.

ABSTRACT Recently, a logarithmic decrease of conductivity has been observed in topological insulators at low temperatures, implying a tendency of localization of surface electrons. Here, we report quantum transport experiments on the topological insulator Bi$_2$Te$_3$ thin films with arrayed antidot nanostructures. With increasing density of the antidots, a systematic decrease is observed in the slope of the logarithmic temperature-dependent conductivity curves, indicating the electron-electron interaction can be tuned by the antidots. Meanwhile, the weak antilocalization effect revealed in magnetoconductivity exhibits an enhanced dominance of electron-electron interaction among decoherence mechanisms. The observation can be understood from an antidot-induced reduction of the effective dielectric constant, which controls the interactions between the surface electrons. Our results clarify the indispensable role of the electron-electron interaction in the localization of surface electrons and indicate the localization of surface electrons in an interacting topological insulator.

KEYWORDS: topological insulator - surface states - antidot - electron-electron interaction - weak antilocalization effect

Topological insulators are gapped band insulators, but have gapless modes on their boundaries.1–4 Recently, there is growing interest in many-body interactions in topological states of matter.5–13 Despite the tremendous interest in physics driven by strong interaction, in the prototype materials of topological insulators, such as Bi$_2$Se$_3$ and Bi$_2$Te$_3$,14–16 the interaction is thought to be fairly weak due to the large background lattice dielectric constant.10,13 Nevertheless, an interaction-induced transport phenomenon resulting from the interplay of interaction and disorder may occur even for weak interactions as long as disorder scattering is sufficiently strong.17–19 In a two-dimensional (2D) electron gas, the effect manifests itself as a decrease in conductivity with logarithmically decreasing temperature. In particular, in sufficiently strong magnetic fields, the effect could be identified when other effects such as weak localization (WL) or weak antilocalization (WAL), which may also exhibit logarithmic temperature dependence,19 are suppressed. The signature of the interaction effect has been observed in recent transport experiments on Bi$_2$Se$_3$ and Bi$_2$Te$_3$,20,25 but convincing quantitative comparison is still lacking.26 A direct way to verify the effect is to modulate the interaction between the surface electrons, then to measure the responses of the finite-temperature conductivity and magnetoconductivity. However, the modulation of interactions between electrons in a solid is difficult, thus was rarely addressed.

In this article, we report quantum transport experiments by introducing antidot nanostructures in topological insulators. In finite-temperature conductivity measurements, as the antidot density changes, we observe a continuous and repeatable change in the slope of the conductivity as a function of logarithmic temperature, indicating that the denser antidots suppress the tendency of localization of the surface electrons. Meanwhile, the WAL effect manifested in the magnetoconductivity...
measurements also shows a tunable localization tendency with the antidot density. It is well accepted that the Dirac fermions cannot be localized by impurities and disorders, while the ordinary electrons can be easily localized in two dimensions. Our experimental data could not be understood within the framework of the existing theories. In order to explain our experimental observations, the electron–electron interaction must inevitably be taken into account. We propose a modulation mechanism wherein antidot array induces a change in the effective dielectric constant of the system, which in turn modulates the electron–electron interaction. The experimental data are fitted reasonably well when this modulation mechanism is included in the transport theory for interacting and disordered Dirac fermions. We therefore show the indispensable role of the interaction in localization of the surface electrons in disordered topological insulators.

RESULTS AND DISCUSSION

The thickness of the Bi$_2$Te$_3$ thin film used in the experiment is 20 nm. A series of antidots arrayed in a periodic triangular lattice are fabricated between the voltage-measuring probes of the samples, as shown in Figure 1a. For five different nanostructured samples in our experiment, the edge-to-edge distances d of two neighboring antidots are 40, 90, 130, 190, and 250 nm, respectively. A smaller value of d represents a larger density of antidots. The diameter of each antidot is fixed at 200 nm for all samples. Figure 1b and its inset show the scanning electron microscopy (SEM) and atomic force microscopy (AFM) images, respectively, of the antidot nanostructured Bi$_2$Te$_3$ film with $d = 40$ nm (sample d40).

Low-temperature dependence of conductivity can reveal the tendency of localization or delocalization at low temperatures. Figure 2a shows the logarithmic temperature-dependent conductivity $\sigma(T)$ curves of different antidot nanostructured samples and a no-antidot thin film sample as a reference, in the absence of a magnetic field. All curves are normalized by their maximum conductivities and corresponding temperatures. Below a threshold temperature (typically ~ 10 K), it is evident that for all samples $\sigma(T)$ decreases linearly with decreasing $\ln T$, manifesting the localization tendency. This means that all electrons in both bulk and surface states tend to be localized and the samples become insulating with decreasing temperature. In Figure 2a, the linear slopes of $\sigma(T)$ curves decrease monotonically as the antidot separation d decreases, indicating the antidot array creates a continuous and systematic change in the localization tendency. A magnetic field applied perpendicular to the sample...
Electron localization tendency is strengthened by the surface electrons in topological insulators. The magnetoconductivity has been measured for all samples at 2.1 K, which is a typical signature of the WAL e- effect as a result of the Berry phase for the surface electrons in topological insulators. It is known that the WAL effect enhances the conductivity with decreasing temperature and follows a $\ln T$ dependence in two dimensions, so it gives a negative contribution to the slope observed in $\sigma(T)$ curves. However, the WAL effect can be quenched by applying a small magnetic field, as shown by the negative magnetoconductivity in Figure 3a. As a result, the quenching of the WAL effect leads to the sharp increase of the slope of the $\sigma(T)$ curves as well as the downshift of $\sigma(T)$ curves in the low-field region, as shown in Figure 2b and d. On the other hand, the negative magnetoconductivity is suppressed with decreasing antidot separation d as shown in Figure 3a. Using the magnetoconductivity formula for interacting Dirac fermions, the measured magnetoconductivity curves in Figure 3a can be quantitatively analyzed. The phase coherence length ϕ can be obtained by the fittings and is shown in Figure 3b as a function of d. We note that the phase coherence length is shortened with decreasing d, indicating that denser antidot array tends to enhance the inelastic scattering, which breaks the phase coherence and gives rise to the suppression of the magnetoconductivity in Figure 3a.

Figure 3c shows the magnetoconductivity of sample d190 measured at temperatures from 2.1 to 12 K. By fitting the magnetoconductivity curve at each temperature, the ϕ dependence on T can be obtained. The relationship between ϕ and T for all the samples is plotted in Figure 3d. Empirically, ϕ increases with decreasing temperature according to $\phi \propto T^{-p/2}$, where the exponent p is positive. Fitting the data shown in Figure 3d, the obtained exponents $p/2$ for all samples are given in Table 1. In a 2D disordered metal, if the dominant decoherence mechanism is the electron–electron interaction, then $p = 1$, or the electron–phonon interaction, then $p = 3$. In our case, the exponent p is close to 1 for all samples and approaches 1 as the antidot density increases, which provides strong and explicit evidence that the decoherence due to electron–electron interaction is dominant and enhanced by antidot array.

To summarize our experimental measurements, (i) $\sigma(T)$ decreases linearly with the logarithmic temperature, indicating the localization tendency of surface electrons. (ii) The slope κ of $\sigma(T)$ vs $\ln T$ curves decreases when the separation of the antidots decreases; that is, the density of antidots increases. The denser the antidot array, the weaker the localization tendency of surface electrons. (iii) The magnetoconductivity reveals the WAL effect from surface electrons. The fitting exponent p in the temperature-dependent phase coherent length is close to 1, indicating that the electron–electron interaction is the dominant decoherence mechanism.

These observations cannot be simply understood within the framework of the localization theory. It is
known that conventional electrons will be localized at low temperatures in a 2D disordered metal.19 On the contrary, the surface massless Dirac electrons of a topological insulator are expected to be immune to localization,40,41 which is evidenced by the WALT-type negative magnetoconductivity in Figure 3. The electron—electron interaction becomes an indispensable ingredient to resolve the puzzle on the coexistence of localization tendency in $\sigma(T)$ and WAL in $\sigma(B)$ in the same sample. A similar localization tendency was also observed in the previous studies of Bi$_2$Se$_3$ and Bi$_2$Te$_3$ thin films20–25 and was suggested to be due to the interaction, but convincing quantitative comparison is still lacking.26 So far only the theory for conventional electrons was exploited for the surface electrons in topological insulators.17–19

In the theory for the gapless Dirac fermions of topological surface states,27 two mechanisms contributing to the lnT dependence of the conductivity are considered: one is the quantum interference, and the other is the interplay of the electron—electron interaction and disorder scattering. For gapless surface fermions of topological insulators, the quantum interference effect gives rise to the WAL effect,32,42 which exhibits the negative magnetoconductivity as shown in Figure 3a and produces a negative contribution to the slope κ of $\sigma(T)$ curves. A small external magnetic field quickly quenches the quantum interference effect, leading to a rapid increase of the slope κ in Figures 2b and d. After the quantum interference is quenched when $B > 0.5$ T, the saturated slope κ contains only the contribution from the electron—electron interaction named as κ_{ee}. For gapless Dirac fermions of topological insulators,27

$$\kappa_{ee} = 1 - \frac{1}{\pi} \arctan \sqrt{1/x^2 - 1} \sqrt{1 - x^2} = \frac{8\pi e^2 \hbar}{\varepsilon_r x}$$

where \hbar is the reduced Planck constant, e is the electron charge, v is the effective velocity of the surface fermions, and ε_r and ε_r are the vacuum and relative dielectric constants, respectively. Equation 1 shows that κ_{ee} could be changed by modifying either ε_r or ε_r. In comparison with ε_r the relative dielectric constant ε_r is more likely to be changed by inducing an antidot array, because it takes into account the effects of the lattice ions and valence electrons. For fixed ε_r, we have calculated κ_{ee} as a function of ε_r for the surface fermions as plotted in Figure 4a. One can see that κ_{ee} decreases monotonically with decreasing ε_r. A qualitative comparison of Figures 4a and 2c, where the linear slopes of $\sigma(T)$ at $B = 2$ T decrease monotonically as the antidot density increases, implies that one of the effects of antidot array is to reduce the effective dielectric constant of the system and to further modulate the contribution from the electron—electron interaction to the slope κ of $\sigma(T)$. The denser the antidot array, the smaller the relative dielectric constant.

Furthermore, in order to extract ε_r from the experimental data, the measured dependences of slopes κ of lnT-dependent conductivity on applied magnetic fields ($0 < B < 2$ T) are plotted in Figure 4b as symbols for all samples. These dependences are fitted using the quantum transport theory of interacting and disordered surface fermions (see solid lines in Figure 4b).27,38 The ε_r as a fitting parameter are obtained for all samples and are shown in Table 1. It is clear that ε_r monotonically decreases when the density of the antidot array is increased. A notable deviation occurring between the fitting curves and the measured slopes for the samples d90 and d40 may result from the size effect, as the sample becomes a combination of 2D and quasi-1D conducting channels, as their phase coherence lengths at 2.1 K are comparable with their antidot distances d, as shown in Table 1. This limits the applicability of the theory for 2D systems.

Table 1. Obtained Parameters for All Samples38

<table>
<thead>
<tr>
<th>Sample</th>
<th>d (nm)</th>
<th>ε_r (nm)</th>
<th>ε_r (nm)</th>
<th>ε_r (nm)</th>
<th>ε_r (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>no antidot</td>
<td>20.0</td>
<td>230.2 ± 3.1</td>
<td>0.67 ± 0.04</td>
<td>22.0 ± 1.2</td>
<td>22.0</td>
</tr>
<tr>
<td>d250</td>
<td>9.3</td>
<td>119.2 ± 2.5</td>
<td>0.63 ± 0.03</td>
<td>8.8 ± 0.5</td>
<td>16.5</td>
</tr>
<tr>
<td>d190</td>
<td>7.4</td>
<td>109.4 ± 3.1</td>
<td>0.60 ± 0.04</td>
<td>6.4 ± 0.1</td>
<td>14.1</td>
</tr>
<tr>
<td>d130</td>
<td>5.5</td>
<td>88.2 ± 2.7</td>
<td>0.57 ± 0.05</td>
<td>3.2 ± 0.2</td>
<td>10.6</td>
</tr>
<tr>
<td>d90</td>
<td>2.9</td>
<td>70.1 ± 1.9</td>
<td>0.53 ± 0.05</td>
<td>1.7 ± 0.5</td>
<td>7.8</td>
</tr>
<tr>
<td>d40</td>
<td>1.6</td>
<td>61.7 ± 2.3</td>
<td>0.49 ± 0.06</td>
<td>1.0 ± 0.5</td>
<td>3.2</td>
</tr>
</tbody>
</table>

* Different from the previous works,34,44 the spin—orbit scattering time (length) is no longer a fitting parameter in our theory for Dirac fermions,27 and d is calculated from the semiclassical conductivity. δ is fitted from magnetoconductivity curves at 2.1 K. ε_r is fitted from the relation $\langle \delta \rangle = T^{-\pi/2}$ as shown in Figure 3c and d. ε_r is fitted from the slope curves in Figure 4b, and ε_{em} is calculated from the Bruggeman effective medium theory (eq 2). d190 means the edge-to-edge distance between two antidots is 190 nm.
We can further compare the fitted ε_f from the transport data with that evaluated from the classical Bruggeman effective medium theory expressed as:

$$\frac{\varepsilon_f - \varepsilon_{em}}{\varepsilon_f + 2\varepsilon_{em}} \frac{\varepsilon_f - \varepsilon_{ef}}{\varepsilon_f + 2\varepsilon_{ef}} = 0$$ \hspace{1cm} (2)$$

where ε_f and ε_{ef} are the volume fraction occupied by the medium a with relative dielectric constant ε_a and medium b with ε_b, respectively, and ε_{em} is the effective relative dielectric constant of the heterogeneous mixture of medium a and b. We set $\varepsilon_f = 1$ for antidot vacuum and extract $\varepsilon_b = 22.0$ as the intrinsic dielectric constant of our Bi$_2$Te$_3$ thin film by the fitting curve for the no-antidot sample in Figure 4b. The values of different samples calculated from eq 2 are shown in Table 1. For comparison, the relative dielectric constants obtained by the two methods are plotted as a function of d in Figure 4c. It is clear that both ε_f and ε_{em} show the same tendency when d is varied, although their magnitudes are different. This difference is not surprising, as the classical Bruggeman effective medium theory is just a rough estimate.

The applicability of modulating the effective dielectric constant by an antidot array can be evidenced by the average distance between surface electrons in quantum transport. Considering the surface states as an ideal Dirac cone, the average distance $2\sqrt{\pi/k_F}$ is about several nanometers for the Fermi wave vector $k_F \approx 0.1$ Å$^{-1}$. However, the quantum conductivity, especially its temperature variation at low temperatures, is contributed by electrons near the Fermi surface. This material is available free of charge via the Internet at http://pubs.acs.org.

CONCLUSIONS

The main observation in this work is that the denser antidots in topological insulator thin films suppress the localization tendency of conduction electrons. The fitting exponent ρ in the temperature dependence of the phase coherent length indicates the dominant role played by the electron—electron interaction. The phenomena can be viewed as the antidot-array-induced reduction of the effective dielectric constant of the system. These reveal that the widely observed localization tendency in low-temperature conductivity of topological insulators results from the interplay of many-body interaction and disorder scattering. Although the surface electrons are usually considered to be insensitive to scattering by impurities or disorder not to be localized by disorder, our experiments suggest that this should be reexamined when a many-body interaction comes into play.

METHODS

The 20 nm thick Bi$_2$Te$_3$ thin film used in the experiment was grown by molecular beam epitaxy on a (111) semi-insulating GaAs substrate with an undoped 85 nm thick ZnSe buffer layer. Standard Hall measurement reveals that the Bi$_2$Te$_3$ thin film has an electron carrier concentration and mobility of 1.5×10^{19} cm$^{-3}$ and 310 cm2/V·s, respectively, at 2.1 K. The Bi$_2$Te$_3$ thin film was first fabricated using standard photolithographic processes. Then a series of antidots arranged in a periodic triangular lattice were fabricated between the voltage-measuring probes with electron beam lithography and dry etching techniques. Ohmic contacts of electrodes are formed by evaporation of Cr(5 nm)/Au(100 nm). All transport measurements were conducted in a Quantum Design physical property measurement system with a 14 T superconducting magnet and a base temperature of 2 K. All samples are measured in pulse-delta mode using a Keithley 6221 as the current source and a Keithley 2182A as the voltage meter.

CONFLICT OF INTEREST: The authors declare no competing financial interest.

Acknowledgment. This work was supported in part by the Research Grants Council of Hong Kong under Grant Nos. 605011, 604910, SEG CUHK06, and 17304414 and in part by the National Natural Science Foundation of China under Grant No. 11204183. The electron-beam lithography facility is supported by the Raith-HKUST Nanotechnology Laboratory at MCSP (SEG HKUST08).

Supporting Information Available: Data fitting, mean free path, threshold temperature, and average distance between electrons near the Fermi surface. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES AND NOTES