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The search for a giant Nernst effect beyond conventional mechanisms offers advantages for developing
advanced thermoelectric devices and understanding charge-entropy conversion. Here, we study the
Seebeck and Nernst effects in HfTe5 across a broad range of magnetic fields. Remarkably, the Nernst
effect forms a giant plateau at ultrahigh magnetic fields (B > 10BQL), with the magnitude reaching up to
50 μV=K at 2 K. By tracking two magnetic-field-driven phase transitions predicted for weak topological
insulators, we find that the giant Nernst plateau exists exclusively in the ideal 1D Weyl phase. Theoretical
analysis further demonstrates that such a giant Nernst plateau arises from the unique thermoelectric
conversion mechanism inherent to the ideal 1D Weyl phase, where the transverse thermoelectric effect
(Nernst effect) is dominated by the longitudinal conduction channel. Our findings expand the under-
standing of ideal Weyl physics and open new avenues for significantly improving thermoelectric
conversion efficiency.
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Introduction—One of the representative transverse
thermoelectric effects is the anomalous Nernst effect
(ANE), where Sxy initially increases, saturates, and forms
a plateau in a range of weak magnetic fields. It has been
recognized that the large Berry curvature, originating from
Bloch electronic bands with spin-orbit coupling, can
generate a significant transverse response [1]. With this
strategy, large ANE has been demonstrated in a few
topological ferromagnets [2–7] and antiferromagnets [8,9].
Despite these advancements, the transverse thermoelectric
effect is typically several orders of magnitude weaker than
its longitudinal counterpart. Moreover, it decays drastically
with decreasing temperature. The discovery of a new
working mechanism that can overcome these limitations
is highly desirable.

In analogy to Bloch bands, electrons experience Landau
quantization and form the Landau band spectrum under
external magnetic fields. The system reaches its quantum
limit (BQL) when all electrons in a band are confined to the
lowest Landau level. Within this regime, 3D topological
materials exhibit a range of exotic quantum phenomena
intrinsically associated with their particular band topology,
including 3D quantum Hall [10–13], 3D metal to insulator
transition [11,12,14], Berry paramagnetism [15–17], and
Weyl node annihilation [18,19]. Transition metal pentatel-
lurides ZrTe5 and HfTe5 exhibit multiple topological
phases [20]. More importantly, their extremely small
Fermi surfaces enable the study to be extended deeper
into the quantum limit than in other 3D materials. Besides
the gap-closing transition at B1 [Fig. 1(c)], another topo-
logical Lifshitz transition B2 [Fig. 1(d)], proposed for weak
topological insulators (see Supplemental Material Sec. SV
[21]), was recently observed in HfTe5 [35,41]. Above B2,
further increasing the magnetic field drives the Fermi
energy toward the 1D Weyl points and eventually forms
the ideal 1D Weyl phase above B3 [Fig. 1(e)]. Such a 1D
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feature of the Weyl node gives rise to distinct quantum
transport compared to that in other dimensions, making it
highly suitable for exploring novel thermoelectric conver-
sion mechanisms.
In this Letter, we investigate a new thermoelectric

conversion mechanism in the ultrahigh magnetic field
where B > 10BQL. We measure the thermoelectric effects
of the high-mobility hafnium pentatelluride (HfTe5) in
magnetic fields up to 33 T. Our results show that, upon the
formation of the ideal 1D Weyl phase, the Nernst signal
becomes field independent, establishing a plateau with
a magnitude that can reach up to 50 μV=K at 2 K.
Furthermore, we theoretically argue that the transverse
thermoelectric effect (Nernst effect) in the ideal 1D Weyl
phase is dominated by the longitudinal conduction channel,
which accounts for the observed giant Nernst plateau in
high magnetic fields.
Experimental details—High quality single crystals

HfTe5 were synthesized using the iodine vapor transport
method in a two-zone furnace. Figure 2(a) presents the
orthorhombic crystal structure of HfTe5, and we define x, y,
and z as directed along a, c, and b, respectively. −Sxx and
Sxy were measured with the DC method in a superconduct-
ing magnet (0–9 T) and with the AC method in a water-
cooled magnet. Thermoelectric experiments were carried
out with the thermal gradient along the a axis and the
magnetic field along the b axis [see Fig. 2(b)]. The high-
field measurements up to 33 T were performed at the
Chinese High Magnetic Field Laboratory at Hefei using a
resistive water-cooled magnet. More experimental details
are described in Supplemental Material Sec. SII [21].

Gap closing of zeroth Landau bands at B1—Hereafter,
we present our main results in order of increasing magnetic
field, starting from zero. The inset of Fig. 2(c) illustrates the
temperature-dependent resistivity with a peak at around
T� ¼ 65 K, which is a typical feature of transition-
pentatelluride samples and is attributed to the shift of
the Fermi energy from the valence band toward the
conduction band as the temperature decreases [36].
Figures 2(c) and 2(d) display the longitudinal (Seebeck)
and transverse (Nernst) thermoelectric responses as func-
tions of magnetic field at selected temperatures. At low
temperatures, clear quantum oscillations can be identified
in both −Sxx and Sxy. The fitted quantum limit for S1 is
approximately BQL ¼ 1.45 T. After the system enters the
quantum limit, −Sxx exhibits a significant drop, with a
magnitude surpassing the quantum oscillations observed at
lower magnetic fields. In addition to the drastic drop, the
Seebeck signal approaches zero at B1, while the Nernst
signal exhibits a sign reversal. For a nontrivial topological
system, band inversion and Zeeman effects drive the two
zeroth Landau bands to cross each other at the critical field
B1 [Fig. 1(c)]. The typical transport responses at B1 have
been investigated in ZrTe5 and Pb1−xSnxSe [37,42–44].
Qualitatively, our experimentally resolved profile bears a
similar appearance to theirs. However, due to the lower
carrier density and smaller gap size, the critical field B1 of
our sample (3.2 T at 2 K) is much lower than that in
previous studies. As the gap size is enlarged with increasing
temperature, warming the sample shifts B1 slightly to a
higher magnetic field [inset of Fig. 2(d)].
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FIG. 1. Sketch of magnetic-field-induced Landau band transitions. (a) Landau bands at kz ¼ 0 and Fermi level (EF) for a 3D weak
topological insulator versus the magnetic field. The red, blue, and gray lines represent the zeroth Landau bands E0þ (electron),
E0− (hole), and high-index Landau bands, respectively. The black line represents the Fermi energy EF. The (i)–(v) regions represent
different phases: (i) the 3D weak topological insulator state, (ii) the system reaches the quantum limit, (iii) the 1D trivial semiconductor
state, (iv) the 1D Weyl phase, and (v) the ideal 1D Weyl phase. (b)–(e) Evolution of the Landau bands for weak topological insulators
under selected magnetic fields. (b) Fermi level crosses only the zeroth Landau band at the quantum limit BQL. (c) Gap of the zeroth
Landau band closes at the critical field B1. (d) Topological Lifshitz transition occurs at B2, where the Fermi level crosses the bottom of
E0−. (e) Ideal 1DWeyl phase with all Weyl points located at EF. B3 is the critical field at which the Fermi energy approaches sufficiently
close to the 1D Weyl points, enabling the observation of quantum transport unique to the ideal 1D Weyl phase.
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Topological Lifshitz transition at B2—Figures 3(a)
and 3(b) present −Sxx and Sxy of sample S2, measured
with a magnetic field up to 33 T. The low-field behavior
closely matches the results of S1. As the magnetic field
increases, the thermopower exhibits a continuous rise until
reaching its maximum at B ¼ 11 T, after which it decays.
This behavior contrasts with theoretical expectations,
which suggest that the thermopower of Dirac and Weyl
semimetals should grow linearly with the field without
saturation [45]. The peak of −Sxx in the quantum limit was
conjectured to result from a metal-insulator transition,
caused by either charge density wave formation or the
magnetic freeze-out effect [11,46]. However, this interpre-
tation has been questioned due to the absence of the
thermodynamic evidence expected for a charge density
wave transition [13]. Moreover, ρxx bends above 20 T and
approaches saturation instead of continuing to diverge as
expected for the magnetic freeze-out effect.
As shown inFig. 1(a), for aweak topological insulator, the

dispersive Landau bands would induce a Lifshitz transition
at B2 [Fig. 1(d)]. The main consequence for a Lifshitz
transition on transport properties is the change of the
scattering rate [38–40]. In our case, the topological change
of the FS will act as a trap for electrons in the scattering
process from E0− to E0þ through impurities. Thus, the peak
in −Sxx can be regarded as the fingerprint of a topological
Lifshitz transition at B2. Theoretically, B2 can be estimated
from (see Supplemental Material Sec. SVIII [21])

2Mz

�
πhn
e

�
2

− αB3
2 þ

�
Δþ ℏ2v2z

2Mz

�
B2
2 ¼ 0; ð1Þ

which indicates that B2 ∼ n2=3 and B2 ∼ v2z . The carrier
density of our sample in zero field is approximately
n0 ¼ 6.0 × 1017=cm3. By substituting this value into
Eq. (1) with vz ¼ 0, the calculated value is approximately
13 T, which is consistent with the experimentally measured
B2 (the peak of −Sxx).
The temperature dependence of the measured B2 can

also be also qualitatively explained within this scenario.
The previous angle-resolved photoemission spectroscopy
(ARPES) experiment [36] indicates that, as the temperature
increases, the zero-field Fermi level moves closer to the
Dirac point, making the contribution of the linear band
more significant. As a result, vz increases with temperature,
leading to a temperature-dependent enhancement of B2.
Taking vzð15 KÞ ¼ 6 × 104 m=s with the same carrier
density results in B2 ≈ 60 T [Fig. 4(c)], which is beyond
the accessible range of our Letter. In the case without such a
topological Lifshitz transition, −Sxx exhibits saturating
behavior, as expected in a trivial semimetal.
Giant Nernst plateau above B3—We now present the

high-field Nernst plateau shown in Fig. 3(b). Notably, at
low temperatures, after an initial decrease, Sxy develops an
extended plateau beyond a saturation field. The saturating
behavior of Sxy indicates the presence of an anomalous,
i.e., a magnetic-field-independent component in the Nernst
signal. Such an anomalous term can reach an ultrahigh
value of 50 μV=K at 2 K. As the temperature increases, the
onset of the plateau moves to a higher magnetic field, and
its height increases [see Fig. 3(d)], reaching 110 μV=K at
the maximum temperature of 10 K, where the plateau
remains clearly visible. Recently, the presence of a nonzero
Berry curvature from the spin-split massive Dirac bands has

(a) (c) (d)

(b)

FIG. 2. Unusual thermoelectric response at B1. (a) Crystal structure of HfTe5. (b) Schematic diagram of thermoelectric effect
measurements. In a perpendicular magnetic field and a longitudinal thermal gradient, carrier diffusion generates a longitudinal electric
field Ex ¼ −Sxxj∇Tj (Seebeck effect) and a transverse electric field Ey ¼ Sxyj∇Tj (Nernst effect). (c),(d) Magnetic field dependence of
the thermopower −Sxx and Nernst signal Sxy at several temperatures below 20 K. The vertical dashed line in both diagrams represents the
magnetic field at the quantum limit (BQL). The gap closure in the zeroth Landau band is indicated at B1, with −Sxx approaching its
minimum and Sxy undergoing a sign reversal. Inset: (c) Temperature dependence of the electrical resistivity [ρðTÞ] of HfTe5 at zero
magnetic field. (d) Temperature dependence of B1.
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been proposed to explain the high-field anomalous Hall
and Nernst effect in nonmagnetic topological materials
[46–51]. However, it may not apply in this case because
Berry curvature is absent in 1D Landau bands. Because of
the compensation between electron carriers and hole
carriers from E0−, the carrier density above B2 would drop
significantly. As a result, the higher magnetic fields would
immediately push the Fermi energy toward the two 1D
Weyl points, forming the ideal Weyl phase. In this sense,
the high-field Nernst plateau exclusively above B2 strongly
indicates an intrinsic correlation with the ideal 1D
Weyl phase.
We theoretically demonstrate that the observed plateau in

Sxy is caused by the ideal 1DWeyl phase shown in Fig. 1(e).
When B > B2, the change of n cannot be ignored, while EF
varies slightly with the magnetic field (see Supplemental
Material Sec. SVIII [21]). Hence the calculation above
B2 is performed with the fixed EF. According to the Mott
relation, Sxy ¼ L0eðρxx∂σxy=∂EF − ρyx∂σxx=∂EFÞ, where
L0 ¼ π2k2BT=3e

2 denotes the Lorentz number. The conduc-
tivity meets the requirements σxyð−EFÞ ¼ −σxyðEFÞ and
σxxð−EFÞ ¼ σxxðEFÞ. Thus, in the ideal 1D Weyl phase
where ∂σxx=∂EFjEF→0 ¼ 0, the Nernst coefficient is deter-
mined by Sxy ¼ L0eσ−1xx ∂σxy=∂EF, where σxy contains only
the Drude term and the anomalous Hall is not included.
Based on the Kubo formula, we obtain ∂σxy=∂EF ¼
−2=ðπRKvwÞ and σxx ¼ Γ=ðπRKvwÞ (see Supplemental
Material Sec. SIX [21]), where RK ¼ h=e2 denotes the
von Klitzing constant, vw ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MzðαB − ΔÞp

denotes
the Fermi velocity of the ideal 1D Weyl phase, and Γ is
the energy broadening of the Landau bands. As a result,

the Nernst coefficient is given by

Sxy
T

¼ −
π2k2B
3e

2

Γ
: ð2Þ

Apart from the basic constants π2k2B=3e, the Nernst coef-
ficient is entirely determined by the energy broadening
parameterΓ, which is field independent in the quantum limit
[52–54]. By taking Γ ¼ 2 meV ∼ Δ, the plateau value is
obtained as Sxy=T ¼ −24.4 μV=K2, which is comparable to
the experimentally measured values. For a higher temper-
ature, a larger Γ is expected [55], and thus a lower Sxy=T is
achieved. Our complete theory not only explains the origin
of the plateau but also predicts the behavior of SxyðBÞ in the
quantum limit, which is in excellent agreement with exper-
imental results, as shown in Fig. 4(a). Moreover, ρxx ¼
σ−1xx ¼ ðπRKvwÞ=Γ in the ideal 1DWeyl phase suggests that
ρxx increases with the magnetic field as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aB − b

p
. The

measured magnetoresistance f½ρxxðBÞ − ρxxð0Þ�=ρxxð0Þg
shown in Fig. 4(b) can be well fitted by this expression
when B > 15 T (ideal 1D Weyl phase), which further
confirms the validity of our explanations.
Discussions—We summarize our findings with a

phase diagram in the B-T plane, shown in Fig. 4(c).
Phenomenally, the giant Nernst plateau observed here is
quite similar to the widely reported ANE [1]. However,
they differ fundamentally in both experimental measure-
ments and theoretical interpretations. First, the giant Nernst
plateau occurs at an ultrahigh magnetic field (B > 10BQL),
while ANE is a low-field effect. To our knowledge, no
experiments have observed plateaus in such strong mag-
netic fields. Second, the giant Nernst plateau represents the
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FIG. 3. Giant Nernst plateau in ideal 1D Weyl states. (a) High-field measurements of −Sxx up to 33 T at several temperatures. The
profiles below 9 T are similar to Fig. 2(d). The critical field B2 for the topological Lifshitz transition is identified from the maximum
of −Sxx (marked by red circles). B2 shifts to higher magnetic fields with increasing temperature and is not observable above 10 K.
(b) High-field measurements of the normalized Nernst effect Sxy=T at the same temperatures as in (a). A plateau can be observed
below 10 K. B3 is identified by the field where Sxy=T starts to saturate (marked by blue squares). (c) Dependence of B2 on vz, calculated
using Eq. (1), with the following parameters:M⊥ ¼ −12.24 eV · Å2,Mz ¼ 2.7 eV · Å2, n ¼ 6 × 1017=cm3, g ¼ 12, andΔ ¼ 2.5 meV.
(d) Summary of the giant Nernst plateau values.
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new mechanism of thermoelectric conversion, where the
plateau is quite different from the semiclassical theories
for ANE [1]. Notably, such a plateau is unrelated to the
anomalous Hall conductivity since our theoretical calcu-
lations show that the Hall conductivity contains only the
Drude term after the formation of Landau bands
(Supplemental Material Sec. SVII [21]). Finally, the giant
Nernst plateau (Sxy=T) is exceptionally large, surpassing
any measured ANEs to date [2–9,47–49], and Eq. (2)
indicates that increasing mobility can further enhance its
magnitude. Moreover, reducing the carrier density will
significantly lower the magnetic field required to form
the ideal 1D Weyl phase. In this sense, the weak
topological insulators with extremely low quantum limit
have potential applications in the development of novel
thermoelectric devices.
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