Featured Article
Spatially resolved gap closing in single Josephson junctions constructed on Bi$_2$Te$_3$ surface
Yuan Pang, Junhua Wang, Zhaozheng Lyu, Guang Yang, Jie Fan, Guangtong Liu, Zhongqing Ji, Xiunian Jing, Changli Yang, Li Lu
doi: 10.1088/1674-1056/25/11/117402
Weak antilocalization and interaction-induced localization of Dirac and Weyl Fermions in topological insulators and semimetals

Hai-Zhou Lu and Shun-Qing Shen

1Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China
2Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

(Received 19 January 2016; published online 28 September 2016)

Weak localization and antilocalization are quantum transport phenomena that arise from the quantum interference in disordered metals. At low temperatures, they can give distinct temperature and magnetic field dependences in conductivity, allowing the symmetry of the system to be explored. In the past few years, they have also been observed in newly emergent topological materials, including topological insulators and topological semimetals. In contrast from the conventional electrons, in these new materials the quasiparticles are described as Dirac or Weyl fermions. In this article, we review our recent efforts on the theories of weak antilocalization and interaction-induced localization for Dirac and Weyl fermions in topological insulators and topological semimetals.

Keywords: localization, antilocalization, topological insulator, topological semimetal

PACS: 72.25. − b, 75.47. − m, 78.40.Kc

DOI: 10.1088/1674-1056/25/11/117202

1. Introduction

Weak antilocalization is a transport phenomenon in the quantum diffusion regime in disordered metals.[1] The quantum diffusion in disordered metals can be defined by the mean free path ℓ and the phase coherence length ℓ_ϕ. The mean free path measures the average distance that an electron travels before its momentum is changed by elastic scattering from static scattering centers, while the phase coherence length measures the average distance that an electron can maintain its phase coherence. If the mean free path is much shorter than the system size and the phase coherence length, then the electrons suffer from scattering but can maintain their phase coherence. This is the quantum diffusive regime, in which the quantum interference between time-reversed scattering loops (see Fig. 1(a)) can give rise to a correction to the conductivity. The weak localization or weak antilocalization arises due to this correction in the conductivity in the quantum diffusive regime.

The phase coherence length is determined by inelastic scattering from electron–phonon coupling and interaction with other electrons. The inelastic scattering has to be suppressed significantly to make the phase coherence length much longer than the mean free path. Therefore, the quantum diffusion usually takes place at extremely low temperatures; e.g., below the liquid helium temperature. If the quantum interference correction is positive, then it gives a weak antilocalization correction to the conductivity and the conductivity goes up with decreasing temperature (see Fig. 1(b)). Because this correction requires time reversal symmetry, it can be suppressed by applying a magnetic field. One can then observe that the conductivity goes down with increasing magnetic field. This negative magnetococonductivity or positive magnetoresistivity is the more familiar signature of the weak antilocalization (see Fig. 1(c)).

![Fig. 1.](color online) (a) Schematic illustration of time reversed scattering loops in the quantum diffusion regime in disordered metals. The open circles represent impurities and the arrows mark the trajectories that electrons travel. (b) and (c) The signatures of the weak antilocalization (WAL) in (b) temperature (T) dependence of the conductivity σ and (c) magnetococonductivity (defined as $\delta \sigma \equiv \sigma(B) - \sigma(0)$), where B is the magnetic field.

In contrast, the quantum interference can be negative, leading to a weak localization effect and totally opposite temperature and magnetic dependencies of conductivity. Whether a
system has weak localization or weak antilocalization depends on the symmetry (see Table 1). According to the classification of the ensembles of random matrix,[3] there are three symmetry classes. If a system has no time-reversal symmetry, then it is in the unitary class, in which there is no weak localization or antilocalization. If a system has time-reversal symmetry but no spin-rotational symmetry, then it is in the symplectic class, in which the weak antilocalization is expected. If a system has both time-reversal and spin-rotational symmetries, then it is in the orthogonal class, in which the weak localization is expected. These symmetry arguments have been well known since the studies on the conventional 2D electron gases.[3]

Table 1. The relation between the symmetry classes (orthogonal, symplectic, and unitary)[3] and the weak localization (WL) and antilocalization (WAL).[3]

<table>
<thead>
<tr>
<th>Symmetry Class</th>
<th>Orthogonal</th>
<th>Symplectic</th>
<th>Unitary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-reversal</td>
<td>√</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>Spin-rotational</td>
<td>√</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>WL/WAL</td>
<td>WL</td>
<td>WAL</td>
<td>×</td>
</tr>
</tbody>
</table>

In the last decade, weak antilocalization has been widely observed in topological materials, such as topological insulators[4–9] and topological semimetals,[10–13] in which the quasiparticles are described not by the Schrödinger equation but as Dirac fermions in the topological insulators and Weyl fermions in the topological semimetals. For Dirac fermions, the weak antilocalization has an alternative understanding based on the Berry phase argument. The Berry phase is a geometric phase collected in an adiabatic cyclic process.[14,15] Since studies on carbon nanotubes have begun, it has been found that massless Dirac fermions can collect a π Berry phase after circulating around the Fermi surface.[16] The π Berry phase induces a destructive quantum interference between time-reversed loops formed by scattering trajectories. The destructive interference can suppress backscattering of electrons, the conductivity is then enhanced with decreasing temperature because the decoherence mechanisms are suppressed at low temperatures.[17,18]

One of the powerful theoretical approaches to study weak localization and antilocalization is the Feynman diagram techniques. Figure 2 summarizes the Feynman diagrams we have used to study the weak localization and antilocalization arising from the quantum interference and interaction. Simply speaking, it is based on the linear response theory of the conductivity, with disorder and interaction taken as perturbations. In the formulism, there are three main contributions to the conductivity. The leading order is the semiclassical Drude conductivity, from which the conductivity correction from the quantum interference is calculated. The Hikami boxes of the maximally-crossed diagrams, from which the conductivity correction from the quantum interference is calculated.

In this paper, we review our recent efforts[19–22] on the weak antilocalization and interaction-induced localization of Dirac and Weyl fermions in topological insulators and topological semimetals.[19–25] Part of the contents have been reviewed in Ref. [26], where only topological insulators are addressed. In Section 2, we discuss the Berry phase argument and the crossover between weak antilocalization and weak localization in magnetically modulated topological insulator and topological insulator thin films. In Section 3, we show the weak localization of Dirac fermions as a result of electron–electron interactions. In Section 4, we review the weak antilocalization and interaction-induced localization of Weyl fermions in 3D topological semimetals. Finally, remarks and perspective are given in Section 5.

Fig. 2. (color online) (a) The diagrams for the semiclassical conductivity σ_0. v and \bar{v} are the bare velocity and the velocity after the vertex correction, respectively. (b) The Hikami boxes of the maximally-crossed diagrams, from which the conductivity correction from the quantum interference σ^{q} is calculated. (c) The iteration equations for the Diffuson (Λ), Cooperon (Γ), and dynamically screened interaction. (d) The Fock and Hartree self-energies dressed by Diffuson and Cooperon, from which the conductivity correction from the electron-electron interaction σ^{ee} is calculated. k and q stand for the wave vectors, and ε_k and ε_{k+q} for the Matsubara frequencies. Adapted from Ref. [19].
2. Weak antilocalization in topological insulators

Topological insulators are gapped band insulators with topologically protected gapless modes surrounding their boundaries.\cite{4–9} The surface of a three-dimensional topological insulator hosts an odd number of two-dimensional gapless Dirac cones. The Dirac cone has a helical spin structure in momentum space.\cite{27} The topological insulators have attracted tremendous interest in their transport properties.\cite{28,29}

It turns out that the known topological insulator materials all have poor mobility. The mean free path is of the order of 10 nm, while the phase coherence length can reach up to 100–1000 nm below the liquid helium temperature. In other words, these materials are well in the quantum diffusion regime at low temperatures, where the weak (anti-)localization is expected. In experiments, the negative magnetoconductivity arising from the weak antilocalization has been observed in almost every topological insulator sample.\cite{30–39}

The surface states of a topological insulator can be described by a two-dimensional massless Dirac model

$$H = \gamma (\sigma_x k_y - \sigma_y k_x),$$

where γ is a parameter related to the effective velocity, $\sigma = (\sigma_x, \sigma_y)$ are the Pauli matrices, and $k = (k_x, k_y)$ is the wave vector. The model describes a conduction band and valence band touching at the Dirac point. Without loss of generality, we can focus on the conduction band. The spinor wavefunction of the conduction band is written as

$$\psi_k(r) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i e^{i\varphi} \end{pmatrix} e^{ikr},$$

with $\tan \varphi = k_y/k_x$. The spinor wave function describes the helical spin structure of the surface states, which can give rise to a π Berry phase when an electron moves adiabatically around the Fermi surface.\cite{40}

The Berry phase is a geometric phase collected in an adiabatic cyclic process,\cite{15,16} and it can be found as

$$\phi_b = -i \int_0^{2\pi} d\varphi \left[\frac{\partial}{\partial \varphi} \psi_k(r) \right] = \pi.$$

The π Berry phase can give an explanation of the weak antilocalization of the two-dimensional massless Dirac fermions. The time-reversed scattering loops in Fig. 1(a) are equivalent to moving an electron on the Fermi surface by one cycle. The Berry phase then plays an important role. The π Berry phase give rises to a destructive quantum interference that suppresses the back scattering and enhances the conductivity, leading to the weak antilocalization.\cite{17,18} The π Berry phase can lead to the absence of backscattering\cite{41} and further the delocalization of the surface electron.\cite{42,43}

To verify the role played by the Berry phase, one can alter the Berry phase by including a mass to the Dirac model\cite{7,44}

$$H = \gamma (\sigma_x k_y - \sigma_y k_x) + \frac{\Delta}{2} \sigma_z.$$

Now the conduction and valence bands are separated by a gap Δ. With the mass term, the Berry phase turns out to be\cite{20}

$$\phi_b = \pi \left(1 - \frac{\Delta}{2E_F} \right),$$

where the Fermi energy E_F is measured from the Dirac point. In the presence of the finite Δ, and if one moves the Fermi energy to the bottom of the conduction band, where $E_F = \Delta/2$, the Berry phase becomes $\phi_b = 0$. In this so-called large-mass limit, the quantum interference changes to constructive, resulting in the crossover to the weak localization.\cite{20,45,46}

The crossover from weak antilocalization to weak localization has been observed in many experiments, where the mass term may arise in several cases. The first one is the magnetically doped surface states.\cite{47–49} In an earlier attempt, we showed that the sharp WAL magnetococonductivity can be completely suppressed by doping Fe on the top surface of the topological insulator Bi$_2$Te$_3$.\cite{34} Later, a complete sign change in magnetococonductivity was observed in 3-quintuple-layer Cr-doped Bi$_2$Se$_3$.\cite{50} Mn-doped Bi$_2$Se$_3$.\cite{51} EuS/Bi$_2$Se$_3$ bilayers,\cite{52} and Sb$_{0.6}$Bi$_{1.4}$Te$_3$ micro flakes grown on the ferrimagnet BaFe$_{12}$O$_{19}$.\cite{53} The second is the finite-size effect of the surface states.\cite{54} A WAL–WL crossover as a function of the gate voltage has been observed in a 4-quintuple-layer Bi$_{1.14}$Sb$_{0.86}$Te$_3$.\cite{55} The third is the bulk states in a thin film of topological insulator.\cite{21} The weak localization is quite different from that in other systems with strong spin–orbit interaction, where weak antilocalization is usually expected. This result was soon supported by other theoretical\cite{56} and experimental works.\cite{57,58}

3. Interaction-induced localization in topological insulators

An alternative definition of a topological insulator is that its topologically protected surface states cannot be localized.\cite{4,5,42,43} The negative magnetococonductivity of the weak antilocalization has been regarded as a signature of this delocalization tendency. However, in most experiments, a suppression of the conductivity with decreasing temperature is observed (see Fig. 3),\cite{35–37,59–62} showing a tendency of localization.\cite{1,63} In other words, the experimental observation in magnetococonductivity and finite temperature conductivity presents a transport paradox in topological insulators.

The electron–electron interaction provides a possible way to understand the contradictory magnetic field and temperature dependences.\cite{19} The interplay of the interaction and disorder can lead to a temperature dependence much like the weak localization, known as the Altshuler–Aronov
effect.\cite{64,65} The theory is established for conventional electrons. We show that Dirac fermions are not immune from the Altshuler–Aronov effect. With or without the magnetic field, the correction from the interaction to the conductivity decreases logarithmically with decreasing temperature. Although the weak antilocalization can enhance the conductivity with decreasing temperature, it is overwhelmed by the contribution from the interaction effect. Therefore, the overall temperature dependence of the conductivity shows a weak localization tendency. Our theoretical results agree well with the experiments, with comparable changes of the conductivity (several ε^2/\hbar), temperatures (0.1 to 10 K), and magnetic fields (0 to 5 T).\cite{35,37,60,62}

$$\kappa \equiv \frac{\pi \hbar}{e^2} \frac{\partial \sigma}{\partial \ln T}. \quad (6)$$

In strong magnetic fields, the slope is solely determined by the interaction effect. As an interaction effect, the slope is supposed to be changed by changing the dielectric constant ε_r. We calculated the slope from the interaction κ^{ee} as a function of ε_r for the surface electrons as plotted in Fig. 5(a). One can see that κ^{ee} decreases monotonically with decreasing ε_r.

To modulate the dielectric constant, we fabricated an array of antidots arranged in a periodic triangular lattice in thin films of Bi_2Te_3, as schematically indicated in Fig. 4(a). The diameter of each antidot is fixed at 200 nm. The edge-to-edge distances d of two neighboring antidots are 40 nm, 90 nm, 130 nm, 190 nm, and 250 nm, respectively. A smaller value of d represents a larger density of antidots. The dielectric constant of Bi_2Te_3 is of the order of 10–100\cite{68} while that of the vacuum at the antidots is 1. According to the effective medium theory,\cite{67} with decreasing distance between the antidots, i.e., more antidots, the dielectric constant is supposed to be reduced. As a result, the slope is also expected to decrease with decreasing distant between the antidots. This is consistent with the observation in Figs. 3 and 5.

In this way, we show that two-dimensional massless Dirac fermions can show the localization tendency when both the electron–electron interaction and disorder scattering are taken into account.
4. Weak antilocalization and interaction-induced localization in topological semimetals

Weyl semimetal is a three-dimensional (3D) topological state of matter, in which the conduction and valence energy bands touch at a finite number of nodes.\[^{10}\] The nodes always appear in pairs, in each pair the quasiparticles (dubbed Weyl fermions) carry opposite chirality and linear dispersion, much like a 3D analog of graphene. In the past few years, a number of condensed matter systems have been suggested to host Weyl fermions.\[^{11-13,70-78}\] Recently, angle-resolved photoemission spectroscopy (ARPES) has identified the Dirac nodes (doubly-degenerate Weyl nodes)\[^{172}\] in (Bi\(_{1-x}\)In\(_x\))\(_2\)Se\(_3\),\[^{79,80}\] Na\(_3\)Bi\[^{74,76,81,82}\] and Cd\(_3\)As\(_2\)^\[^{76,83-86}\] and Weyl nodes in the TaAs family.\[^{87-91}\] The negative magnetoconductivity arising from the weak antilocalization has been observed recently in Bi\(_{0.97}\)Sb\(_{0.03}\),\[^{92,93}\] ZrTe\(_5\),\[^{94}\] and TaAs.\[^{88,95}\]

One of the low-energy descriptions of Weyl fermions in semimetals is

\[
H = \pm \hbar v_F \sigma \cdot k, \tag{7}
\]

where the valley index ± describes the opposite chirality, \(v_F\) is the Fermi velocity, \(\hbar\) is the reduced Planck constant, \(\sigma = (\sigma_x, \sigma_y, \sigma_z)\) is the vector of Pauli matrices, and \(k\) is the wave vector measured from the Weyl nodes at ±\(k_c\). Note that the model has the symplectic symmetry, so the weak antilocalization is expected. Moreover, we find the Berry phase also explain the weak localization in Weyl semimetals.\[^{25}\]

We calculate the magnetoconductivity arising from the quantum interference, as shown in Fig. 7. As \(B \to 0\), \(\delta \sigma(B)\) is proportional to \(-\sqrt{B}\) for \(\ell_B \ll \ell_B\) or at low temperatures, and \(\delta \sigma(B) \propto -B^2\) for \(\ell_B \ll \ell_B\) at high temperatures. \(\ell_B\) can be evaluated approximately as 12.8/\(\sqrt{B}\) nm with \(B\) in units of Tesla. Usually, below the liquid helium temperature \(\ell_B\) can be as long as hundreds of nanometers to one micrometer, much longer than \(\ell_B\), which is tens of nanometers between 0.1 T and 1 T. Therefore, the \(-\sqrt{B}\) magnetoconductivity at low temperatures and small fields serves as a signature for the weak antilocalization of 3D Weyl fermions. Figure 7(a) shows \(\delta \sigma(B)\) of two valleys of Weyl fermions in the absence of intervalley scattering. For long \(\ell_\phi\), \(\delta \sigma(B)\) is negative and proportional to \(\sqrt{B}\), showing the signature of the weak antilocalization of 3D Weyl fermions. This \(-\sqrt{B}\) dependence agrees well with the experiment,\[^{92,93}\] and we emphasize that it is obtained from a complete diagram calculation with only two parameters \(\ell\) and \(\ell_\phi\) of physical meanings. As \(\ell_\phi\) becomes shorter, a change from \(-\sqrt{B}\) to \(-B^2\) is evident. \(\delta \sigma(B)\) vanishes at \(\ell_\phi = \ell\) as the system quits the quantum interference regime.
interaction ($p = 3/2$) or electron–phonon interaction ($p = 3$). At high temperatures, $\ell_\theta \to 0$: thus, $B_c \to \infty$ and we have $\delta \sigma_{zz}^{00} \propto B^2$. At low temperatures, $\ell_\theta \to \infty$: then $B_c = 0$ and we have $\delta \sigma_{zz}^{00} \propto \sqrt{B}$. By fitting the magnetoconductivity, we find that $p \approx 1.5$.\footnote{25}

In the presence of the interaction, we find that the change of conductivity with temperature for one valley of Weyl fermions can be summarized as

$$\Delta \sigma(T) = c_{ee} T^{1/2} - c_{qi} T^{p/2}, \quad (9)$$

where both c_{ee} and c_{qi} are positive parameters. This describes a competition between the interaction-induced weak localization and the interference-induced weak antilocalization, as shown in Fig. 8 schematically. At higher temperatures, the conductivity increases with decreasing temperature, showing a weak antilocalization behavior. Below a critical temperature T_c, the conductivity starts to drop with decreasing temperature, exhibiting a localization tendency. The critical temperature can be found as $T_c = (c_{ee}/p \cdot c_{qi})^{2/(p-1)}$. Because $c_{ee}, c_{qi} > 0$, this means as long as $p > 1$, there is always a critical temperature below which the conductivity drops with decreasing temperature. For known decoherence mechanisms in 3D, p is always greater than 1.\footnote{24} With a set of typical parameters, we find that $T_c \approx 0.4–10^6 \, \text{K}$.\footnote{24}

![Fig. 8. (color online) A schematic demonstration of the change of conductivity $\Delta \sigma$ as a function of temperature T. We choose $c_{ee} = c_{qi}$. T_c is the critical temperature below which the conductivity drops with decreasing temperature. Adapted from Ref. [24].](image)

5. Remarks and Perspective

In summary, we systematically studied the weak antilocalization and interaction-induced localization for Dirac and Weyl fermions in topological insulators and topological semimetals. With the help of Feynman diagram techniques, we considered the correction to the conductivity from the quantum interference correction and electron–electron interaction. We predicted the crossover between weak antilocalization and weak localization for the massive Dirac fermions. The theory can be applied to magnetically doped topological insulators and surface and bulk states in topological insulator thin films. With the help of an antidot nanostructure in topological insulator thin films, we verified the interaction induced localization tendency for Dirac fermions in topological insulators. We also studied the weak antilocalization and interaction effect in Weyl semimetals. For a single valley of Weyl fermions, we found that the magnetoconductivity is negative and proportional to the square root of the magnetic field at low temperatures, giving the signature for the weak antilocalization in three dimensions as well as for the Weyl fermion. In the presence of strong intervalley effects, we expected a crossover from the weak antilocalization to weak localization. In addition, we found that the interplay of electron–electron interaction and disorder scattering can also give rise to a tendency to localization for Weyl fermions. Finally, we remark on the possible future works. On the weak localization induced by the interaction, the bulk and surface states still coexist on the Fermi surface in the latest experiment work. To show the interaction-induced localization of the surface states, further experiments are still needed to be performed in intrinsic topological insulators by doping\footnote{96} or using ternary and quaternary compounds.\footnote{97–103} Topological Weyl semimetals provide a new platform to study the weak antilocalization in three dimensions. Our formula of magnetoconductivity can be used for a systematic study of the transport experiments on topological semimetals. One of the interesting fields is the theories of the weak localization for semimetals with monopole charges higher than 1, as has recently been explored for the double-Weyl semimetals.\footnote{25}

Also, the weak (anti-)localization theories for nodal-line and
drumhead semimetal could be interesting topics for further re-
search.

Acknowledgments

We thank fruitful discussions with our collaborators Jun-
ren Shi, Jiannong Wang, Fuchun Zhang, Michael Ma, Hong-
tao He, Wenyu Shan, Songbo Zhang, Hongchao Liu, Hui Li,
Gulin Zheng, and Mingliang Tian.

References

[19] Shen S Q, Shan W Y and Lu H Z 2011 SPIN 01 33

[28] Lu H Z and Shen S Q 2010 Phys. Rev. B 81 075129

Chinese Physics B

Volume 25 Number 11 November 2016

TOPICAL REVIEW — Topological electronic states

117105 Quantum transport properties of the three-dimensional Dirac semimetal Cd₃As₂ single crystals
Lan-Po He and Shi-Yan Li

117106 Topological nodal line semimetals
Chen Fang, Hongming Weng, Xi Dai and Zhong Fang

117201 Electron localization in ultrathin films of three-dimensional topological insulators
Jian Liao, Gang Shi, Nan Liu and Yongqing Li

117202 Weak antilocalization and interaction-induced localization of Dirac and Weyl Fermions in topological insulators and semimetals
Hai-Zhou Lu and Shun-Qing Shen

117204 Recent observations of negative longitudinal magnetoresistance in semimetal
Xi-Tong Xu and Shuang Jia

117308 Quantum anomalous Hall effect in real materials
Jiayong Zhang, Bao Zhao, Tong Zhou and Zhongqin Yang

117309 Thermoelectric effects and topological insulators
Yong Xu

117310 Topological hierarchy matters — topological matters with superlattices of defects
Jing He and Su-Peng Kou

117311 Disorder effects in topological states: Brief review of the recent developments
Binglan Wu, Juntao Song, Jiaojiao Zhou and Hua Jiang

117312 Two-dimensional topological insulators with large bulk energy gap
Z Q Yang, Jin-Feng Jia and Dong Qian

117313 Electronic properties of SnTe-class topological crystalline insulator materials
Jianfeng Wang, Na Wang, Huaqing Huang and Wenhui Duan

RAPID COMMUNICATION

116101 Transport coefficients and mechanical response in hard-disk colloidal suspensions
Bo-Kai Zhang, Jian Li, Kang Chen, Wen-De Tian and Yu-Qiang Ma

117803 Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction
Haiyan Wu, Ziguang Ma, Yang Jiang, Lu Wang, Haojun Yang, Yangfeng Li, Peng Zuo, Haiqiang Jia, Wenzhong Wang, Junming Zhou, Wuming Liu and Hong Chen

GENERAL

110201 Conformal structure-preserving method for damped nonlinear Schrödinger equation
Hao Fu, Wei-En Zhou, Xu Qian, Song-He Song and Li-Ying Zhang

(Continued on the Bookbinding Inside Back Cover)
<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>110301</td>
<td>Fractal dynamics in the ionization of helium Rydberg atoms</td>
<td>Xiulan Xu, Yanhui Zhang, Xiangji Cai, Guopeng Zhao and Lisha Kang</td>
</tr>
<tr>
<td>110302</td>
<td>General coarsened measurement references for revelation of a classical world</td>
<td>Dong Xie, Chunling Xu and Anmin Wang</td>
</tr>
<tr>
<td>110303</td>
<td>Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal</td>
<td>Lian-Wu Yang and Yun-Jie Xia</td>
</tr>
<tr>
<td>110304</td>
<td>Stopping time of a one-dimensional bounded quantum walk</td>
<td>Hao Luo, Xiang Zhan, Peng Zhang and Peng Xue</td>
</tr>
<tr>
<td>110305</td>
<td>Cryptanalysis of quantum broadcast communication and authentication protocol with a one-time pad</td>
<td>Ya Cao and Fei Gao</td>
</tr>
<tr>
<td>110306</td>
<td>Evolution of the vortex state in the BCS–BEC crossover of a quasi two-dimensional superfluid Fermi gas</td>
<td>Xuebing Luo, Kezhao Zhou and Zhidong Zhang</td>
</tr>
<tr>
<td>110501</td>
<td>Cluster synchronization of community network with distributed time delays via impulsive control</td>
<td>Hui Leng and Zhao-Yan Wu</td>
</tr>
<tr>
<td>110502</td>
<td>Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations</td>
<td>Jian Zhong, Gang Dong, Yimei Sun, Zhaoyang Zhang and Yuqin Wu</td>
</tr>
<tr>
<td>110503</td>
<td>Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system</td>
<td>Hai-Tao Li and Wei-Yang Qin</td>
</tr>
<tr>
<td>110504</td>
<td>Anomalous transport in fluid field with random waiting time depending on the preceding jump length</td>
<td>Hong Zhang and Guo-Hua Li</td>
</tr>
</tbody>
</table>

ATOMIC AND MOLECULAR PHYSICS

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>113101</td>
<td>Theoretics-directed effect of copper or aluminum content on the ductility characteristics of Al-based (Al₃Ti, AlTi, AlCu, AlTiCu₂) intermetallic compounds</td>
<td>Yong Li, Xiao-Juan Ma, Qi-Jun Liu, Ge-Xing Kong, Hai-Xia Ma, Wen-Peng Wang, Yi-Gao Wang, Zhen Jiao, Fu-Sheng Liu and Zheng-Tang Liu</td>
</tr>
<tr>
<td>113102</td>
<td>Isotope shift calculations for D lines of stable and short-lived lithium nuclei</td>
<td>Geng-Hua Yu, Peng-Yi Zhao, Bing-Ming Xu, Wei Yang and Xiao-Ling Zhu</td>
</tr>
<tr>
<td>113201</td>
<td>High-order harmonic generation of CO₂ with different vibrational modes in an intense laser field</td>
<td>Hui Du, Hong-Dan Zhang, Jun Zhang, Hai-Feng Liu, Xue-Fei Pan, Jing Guo and Xue-Shen Liu</td>
</tr>
<tr>
<td>113401</td>
<td>Landau–Zener model for electron loss of low-energy negative fluorine ions to surface cations during grazing scattering on a LiF(001) surface</td>
<td>Wang Zhou, Meixiao Zhang, Lihua Zhou, Hu Zhou, Yulong Ma, Yanling Guo, Lin Chen and Ximeng Chen</td>
</tr>
<tr>
<td>113701</td>
<td>Semi-analytical model for quasi-double-layer surface electrode ion traps</td>
<td>Jian Zhang, Shuming Chen and Yaohua Wang</td>
</tr>
</tbody>
</table>

(Continued on the Bookbinding Inside Back Cover)
Theoretical derivation and simulation of a versatile electrostatic trap for cold polar molecules
Shengqiang Li

An optimized ion trap geometry to measure quadrupole shifts of 171Yb$^+$ clocks
N Batra, B K Sahoo and S De

ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS

Application of optical diffraction method in designing phase plates
Ze-Min Lei, Xiao-Yan Sun, Feng-Nian Lv, Zhen Zhang and Xing-Qiang Lu

Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy
Qin-Bin Huang, Xue-Mei Xu, Chen-Jing Li, Yi-Peng Ding, Can Cao, Lin-Zi Yin and Jia-Feng Ding

Theoretical simulation of 87Rb absorption spectrum in a thermal cell
Hong Cheng, Shan-Shan Zhang, Pei-Pei Xin, Yuan Cheng and Hong-Ping Liu

Observation of multi-Raman gain resonances in rubidium vapor
Jun Liu, Dong Wei, Jin-wen Wang, Ya Yu, Hua-jie Hu, Hong Gao and Fu-li Li

Two-dimensional gain cross-grating based on spatial modulation of active Raman gain
Li Wang, Feng-Xue Zhou, Hong-Ju Guo, Yue-Ping Niu and Shang-Qing Gong

Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah and Jabar M A Fatah

An efficient continuous-wave YVO$_4$/Nd:YVO$_4$/YVO$_4$ self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode
Li Fan, Weiqian Zhao, Xin Qiao, Changquan Xia, Lichun Wang, Huibo Fan and Mingya Shen

Research of the use of silver nanowires as a current spreading layer on vertical-cavity surface-emitting lasers
Xia Guo, Lei Shi, Chong Li, Jian Dong, Bai Liu, Shuai Hu and Yan He

Coupled-resonator-induced transparency in two microspheres as the element of angular velocity sensing
Kun Qian, Jun Tang, Hao Guo, Wei Zhang, Jian-Hua Liu, Jun Liu, Chen-Yang Xue and Wen-Dong Zhang

Tracking molecular structure deformation of nitrobenzene and its torsion–vibration coupling by intense pumping CARS
Chang Wang, Hong-Lin Wu, Yun-Fei Song, Xing He, Yan-Qiang Yang and Duo-Wang Tan

Ultra broadband flat dispersion tailoring on reversed-rib chalcogenide glass waveguide
Yanfen Zhai, Renduo Qi, Chenzhi Yuan, Wei Zhang and Yidong Huang

Optimizing calculation of phase screen distribution with minimum condition along an inhomogeneous turbulent path
Wen-Yi Shao and Hao Xian

High-reflectivity high-contrast grating focusing reflector on silicon-on-insulator wafer
Wenjing Fang, Yongqing Huang, Xiaofeng Duan, Kai Liu, Jiarui Fei and Xiaomin Ren

(Continued on the Bookbinding Inside Back Cover)
A proposal for the generation of optical frequency comb in temperature insensitive microcavity
Xun Lei, Dandan Bian and Shaowu Chen

Turbulence mitigation scheme based on multiple-user detection in an orbital–angular-momentum multiplexed system
Li Zou, Le Wang, Sheng-Mei Zhao and Han-Wu Chen

Plasmon–phonon coupling in graphene–hyperbolic bilayer heterostructures
Ge Yin, Jun Yuan, Wei Jiang, Jianfei Zhu and Yungui Ma

Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures
Arafa H Aly and Ahmed Mehaney

Temperature-dependent specific heat of suspended platinum nanofilms at 80–380 K
Qin-Yi Li, Masahiro Narasaki, Koji Takahashi, Tatsuya Ikuta, Takashi Nishiyama and Xing Zhang

Generalized Birkhoffian representation of nonholonomic systems and its discrete variational algorithm
Shixing Liu, Chang Liu, Wei Hua and Yongxin Guo

Molecular dynamics simulation of structural change at metal/semiconductor interface induced by nanoindenter
Bing-Bing Zhao, Ying Wang, Chang Liu and Xiao-Chun Wang

Induced magnetic field stagnation point flow of nanofluid past convectively heated stretching sheet with Buoyancy effects
Tanzila Hayat and S Nadeem

Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme
Yang Shen, Hua Shen, Kai-Xin Liu, Pu Chen and De-Liang Zhang

A divertor plasma configuration design method for tokamaks
Yong Guo, Bing-Jia Xiao, Lei Liu, Fei Yang, Yuechang Wang and Qinglai Qiu

One-dimensional hybrid simulation of the electrical asymmetry effect caused by the fourth-order harmonic in dual-frequency capacitively coupled plasma
Shuai Wang, Hai-Feng Long, Zhen-Hua Bi, Wei Jiang, Xiang Xu and You-Nian Wang

Quantitative determination of anti-structured defects applied to alloys of a wide chemical range
Jing Zhang, Zheng Chen, Yongxin Wang and Yanli Lu

Effect of Ar ion irradiation on the room temperature ferromagnetism of undoped and Cu-doped rutile TiO₂ single crystals
Nan-Nan Xu, Gong-Ping Li, Qiao-Lu Lin, Huan Liu and Liang-Man Bao

Thermophysical properties of iridium at finite temperature
Priyank Kumar, N K Bhatt, P R Vyas and V B Gohel

First-principles study of He trapping in η-Fe₂C
Bing-Ling He, Jin-Long Wang, Zhi-Xue Tian, Li-Juan Jiang, Wei Song and Bin Wang

(Continued on the Bookbinding Inside Back Cover)
Kernel polynomial representation for imaginary-time Green’s functions in continuous-time quantum Monte Carlo impurity solver
Li Huang

Current spreading in GaN-based light-emitting diodes
Qiang Li, Yufeng Li, Minyan Zhang, Wen Ding and Feng Yun

Strain-induced magnetism in ReS$_2$ monolayer with defects
Xiao-Ou Zhang and Qing-Fang Li

Crossover of large to small radius polaron in ionic crystals
M I Umo

Spin noise spectroscopy of rubidium atomic gas under resonant and non-resonant conditions
Jian Ma, Ping Shi, Xuan Qian, Wei Li and Yang Ji

Small-signal modeling of GaN HEMT switch with a new intrinsic elements extraction method
Miao Geng, Pei-Xian Li, Wei-Jun Luo, Peng-Peng Sun, Rong Zhang and Xiao-Hua Ma

Electron states and electron Raman scattering in semiconductor double cylindrical quantum well wire
M Munguía-Rodríguez, Ri Betancourt-Riera, Re Betancourt-Riera, R Riera and J M Nieto Jalil

Electronic transport of bilayer graphene with asymmetry line defects
Xiao-Ming Zhao, Ya-Jie Wu, Chan Chen, Ying Liang and Su-Peng Kou

Effects of fluorine-based plasma treatment and thermal annealing on high-Al content AlGaN Schottky contact
Fang Liu and Zhixin Qin

Recessed-gate quasi-enhancement-mode AlGaN/GaN high electron mobility transistors with oxygen plasma treatment
Yun-Long He, Chong Wang, Min-Han Mi, Xue-Feng Zheng, Meng Zhang, Meng-Di Zhao, Heng-Shuang Zhang, Li-Xiang Chen, Jin-Cheng Zhang, Xiao-Hua Ma and Yue Hao

Charge transport and bipolar switching mechanism in a Cu/HfO$_2$/Pt resistive switching cell
Tingting Tan, Tingting Guo, Zhihui Wu and Zhengtang Liu

Spin-dependent thermoelectric effect and spin battery mechanism in triple quantum dots with Rashba spin–orbital interaction
Wei-Ping Xu, Yu-Ying Zhang, Qiang Wang and Yi-Hang Nie

First-principles calculation of the structural, electronic, and magnetic properties of cubic perovskite Rb$_x$MnF$_4$ (X = Mn, V, Co, Fe)
Muhammad Raza ur rehman Hashmi, Muhammad Zafar, M Shakil, Atif Sattar, Shabbir Ahmed and S A Ahmad

Spatially resolved gap closing in single Josephson junctions constructed on Bi$_2$Se$_3$ surface
Yuan Pang, Junhua Wang, Zhaozheng Lyu, Guang Yang, Jie Fan, Guangtong Liu, Zhongqing Ji, Xiunian Jing, Changli Yang and Li Lu

Interplay between spin frustration and magnetism in the exactly solved two-leg mixed spin ladder
Yan Qi, Song-Wei Lv, An Du and Nai-sen Yu
Size-dependent exchange bias in single phase Mn$_3$O$_4$ nanoparticles
Song-Wei Wang, Xin Zhang, Rong Yao and Guang-Hui Rao

Dy substitution effect on the temperature dependences of magnetostriction in Pr$_{1-x}$Dy$_x$Fe$_{1.9}$ alloys
Yan-Mei Tang, Hai-Fu Huang, Shao-Long Tang and You-Wei Du

Improvement in coercivity, thermal stability, and corrosion resistance of sintered Nd–Fe–B magnets with Dy$_{80}$Ga$_{20}$ intergranular addition
Beibei Zhou, Xiangbin Li, Xuejing Cao, Gaolin Yan and Aru Yan

Lumped modeling with circuit elements for nonreciprocal magnetoelectric tunable band-pass filter
Xiao-Hong Li, Hao-Miao Zhou, Qiu-shi Zhang and Wen-Wen Hu

Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films
Wen-Feng Liu, Min-Gang Zhang, Ke-Wei Zhang, Hai-Jie Zhang, Xiao-Hong Xu and Yue-Sheng Chai

Threshold resistance switching in silicon-rich SiO$_x$ thin films
Da Chen and Shi-Hua Huang

Exchange effect and magneto–plasmon mode dispersion in an anisotropic two-dimensional electronic system
Xiaoguang Wu

Full-profile fitting of emission spectrum to determine transition intensity parameters of Yb$^{3+}$:GdTaO$_4$
Qingli Zhang, Guihua Sun, Kaijie Ning, Chaoshu Shi, Wenpeng Liu, Dunlu Sun and Shaoqiang Yin

Engineering optical gradient force from coupled surface plasmon polariton modes in nanoscale plasmonic waveguides
Jiahui Lu and Guanghui Wang

Effect of Mo capping layers thickness on the perpendicular magnetic anisotropy in MgO/CoFeB based top magnetic tunnel junction structure
Yi Liu, Kai-Gui Zhu, Hui-Cai Zhong, Zheng-Yong Zhu, Tao Yu and Su-De Ma

Restructuring of plasmonic nanoparticle aggregates with arbitrary particle size distribution in pulsed laser fields
A E Ershov, A P Gavrilyuk, S V Karpov and S P Polyutov

INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY

Low specific contact resistivity to graphene achieved by AuGe/Ni/Au and annealing process
Shu-Zhen Yu, Yan Song, Jian-Rong Dong, Yu-Run Sun, Yong-Ming Zhao and Yang He

Metal-enhanced fluorescence of graphene oxide by palladium nanoparticles in the blue–green part of the spectrum
A Omidvar, M R RashidianVaziri, B Jaleh, N Partovi Shabestar and M Naroozi

Bolometric effect in a waveguide-integrated graphene photodetector
Yubing Wang, Weihong Yin, Qin Han, Xiaohong Yang, Han Ye, Qianqian Lv and Dongdong Yin

(Continued on the Bookbinding Inside Back Cover)
Large single crystal diamond grown in FeNiMnCo–S–C system under high pressure and high temperature conditions
He Zhang, Shangsheng Li, Taichao Su, Meihua Hu, Guanghui Li, Hongan Ma and Xiaopeng Jia

Large scale fabrication of nitrogen vacancy-embedded diamond nanostructures for single-photon source applications
Qianqing Jiang, Wuxia Li, Chengchun Tang, Yanchun Chang, Tingting Hao, Xinyu Pan, Haitao Ye, Junjie Li and Changzhi Gu

High performance photodetectors based on high quality InP nanowires
Yan-Kun Yang, Tie-Feng Yang, Hong-Lai Li, Zhao-Yang Qi, Xin-Liang Chen, Wen-Qiang Wu, Xue-Lu Hu, Peng-Bin He, Ying Jiang, Wei Hu, Qing-Lin Zhang, Xiu-Juan Zhuang, Xiao-Li Zhu and An-Lian Pan

Block copolymer morphologies confined by square-shaped particle: Hard and soft confinement
Qiyi Zhang, Wenyan Yang and Kaiyan Hu

Polydisperse spherical colloidal silica particles: Preparation and application
Hui Kong, Junchao Huo, Chenliang Liang, Shasha Li, Weili Liu and Zhitang Song

Parasitic effects of air-gap through-silicon vias in high-speed three-dimensional integrated circuits
Xiaoxian Liu, Zhangming Zhu, Yintang Yang, Ruixue Ding and Yuejin Li

An ultra-wideband pattern reconfigurable antenna based on graphene coating
YanNan Jiang, Rui Yuan, Xi Gao, Jiao Wang, SiMin Li and Yi-Yu Lin

Theoretical investigation of frequency characteristics of free oscillation and injection-locked magnetrons
Song Yue, Dong-ping Gao, Zhao-chuan Zhang and Wei-long Wang

Analytical threshold voltage model for strained silicon GAA-TFET
Hai-Yan Kang, Hui-Yong Hu and Bin Wang

Equivalent distributed capacitance model of oxide traps on frequency dispersion of C–V curve for MOS capacitors
Han-Han Lu, Jing-Ping Xu, Lu Liu, Pui-To Lai and Wing-Man Tang

Ultra-low temperature radio-frequency performance of partially depleted silicon-on-insulator n-type metal–oxide–semiconductor field-effect transistors with tunnel diode body contact structures
Kai Lu, Jing Chen, Yuping Huang, Jun Liu, Jiexin Luo and Xi Wang

Technology demonstration of a novel poly-Si nanowire thin film transistor
Libin Liu, Renrong Liang, Bolin Shan, Jun Xu and Jing Wang

Bias-dependent timing jitter of 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode
Ge Zhu, Fu Zheng, Chao Wang, Zhbin Sun, Guangjie Zhai and Qing Zhao

High-performance InGaN/GaN MQW LEDs with Al-doped ZnO transparent conductive layers grown by MOCVD using H₂O as an oxidizer
Jia-Yong Lin, Yan-Li Pei, Yi Zhuo, Zi-Min Chen, Rui-Qin Hu, Guang-Shuo Cai and Gang Wang

Dynamic instability of collective myosin II motors
Jin-Fang Li, Zi-Qing Wang, Qi-Kun Li, Jian-Jun Xing and Guo-Dong Wang

(Continued on the Bookbinding Inside Back Cover)
Control of epitaxial growth at a-Si:H/c-Si heterointerface by the working pressure in PECVD
Yanjiao Shen, Jianhui Chen, Jing Yang, Bingbing Chen, Jingwei Chen, Feng Li, Xiuhong Dai, Haixu Liu, Ying Xu and Yaohua Mai

Pedestrians’ behavior in emergency evacuation: Modeling and simulation
Lei Wang, Jie-Hui Zheng, Xiao-Shuang Zhang, Jian-Lin Zhang, Qiu-Zhen Wang and Qian Zhang

North west cape-induced electron precipitation and theoretical simulation
Zhen-xia Zhang, Xin-qiao Li, Chen-Yu Wang and Lun-Jin Chen