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Nernst plateau in the quantum limit of low-carrier-density topological insulators
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Nernst effect, a transverse electric current induced by a temperature gradient, is a promising tool for revealing
emergent phases of condensed matter. We find a Nernst coefficient plateau in low carrier density topological
insulators, as a signature of 1D Weyl points in the quantum limit of the weak topological insulator. The plateau
height is inversely proportional to the impurity density, suggesting a way to engineer infinitely large Nernst
effects. The Nernst plateau also exists in strong topological insulators, at the bottom of the lowest Landau band.
We show that these plateaus have been overlooked in the previous experiments and we highlight the experimental
conditions to observe them. Our results may inspire more investigations of employing anomalous Nernst effect
to identify emergent phases of condensed matter.
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Introduction. Nernst effect is a thermoelectric Hall effect,
exhibiting as a transverse electric current generated by a tem-
perature gradient. It is a promising measurement method to
reveal outstanding signatures more than those in the con-
ductivity. Two types of Nernst effects have been observed
in the experiments [1,2], the normal one shows a weak-field
peak in metals [3–11] and superconductors [10–17] and the
anomalous one shows a plateau in topological and magnetic
materials in weak fields [18–28] [Fig. 1(a)]. A plateau, quan-
tized or not, is always intriguing, thus the Nernst plateau has
attracted significant attention in the past ten years. It can be
explained by either the saturation of magnetization or finite
Berry curvature induced by the self-rotation of Bloch wave
packets [29–32]. Nevertheless, none of these mechanisms
applies in strong magnetic fields, where Landau levels are
formed and each level produces a quantized Hall conductivity.
According to the Mott relation [33–35], both types of the
Nernst effect are expected to decay and vanish in extremely
strong magnetic fields.

In this Letter, however, we theoretically demonstrate that
a Nernst plateau can form in the strong-field quantum limit
of topological insulators [Fig. 1(b)], as the ratio of the Nernst
coefficient Sxy to temperature T ,

Syx

T
= π2k2

B

3e

2

R�
, (1)

where, besides the fundamental constants (the Boltzmann
constants kB, electron charge e, and π ), R = 1 for weak and
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R = 5 for strong topological insulators, and the Landau-band
broadening � could remain invariant in the quantum limit, as
protected by a detailed charge neutrality resulted from a non-
trivial topological phase transition, giving rise to the Nernst
plateau. Moreover, the height of this Nernst plateau can in-
crease infinitely with decreasing impurity density. Our results
not only predict a Nernst plateau in the ultraquantum limit of
low-carrier-density topological insulators, but also suggest a
strategy to enhance thermoelectric conversion efficiency.

Landau bands in topological insulators. The 3D strong and
weak topological insulators can be generically described by
the modified Dirac model [36],

H0(k) = h̄vxkxτzσx + h̄vykyτ0σy + h̄vzkzτxσx

+ [
� + M⊥

(
k2

x + k2
y

) + Mzk
2
z

]
τ0σz, (2)

where vx,y,z are the Fermi velocities, and σ and τ are Pauli
matrices for pseudo and real spins, respectively. 2|�| is the
bulk gap, and M⊥ and Mz are two minimal band inversion
parameters used to distinguish strong and weak topological
insulators [37–42]. Without loss of generality, we assume
� > 0, then Eq. (2) describes a strong topological insulator
when Mz < M⊥ < 0 [43–45], a weak topological insulator
when M⊥ < 0 and Mz > 0, or a normal insulator when M⊥ >

0 and Mz > 0 (see Sec. SI of the Supplemental Material [46]).
By applying a uniform z-direction magnetic field

B = (0, 0, B), the energy spectrum of the topological
insulator turns to a series of 1D bands of Landau levels.
To analyze the Landau bands (details can be found in Sec. SI
of the Supplemental Material [46]), the canonical wave
vectors are defined by the Peierls substitution � = k + eA/h̄
with the Landau gauge potential A = (−yB, 0, 0). The ladder
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operators then can be constructed by �x and �y, which
further yield the 1D Landau bands as Eμ

nν (kz ) = μ(Z −
M⊥/�2

B) + ν

√
(Mzk2

z + 2M⊥n/�2
B + �)2 + (

√
2nh̄v⊥/�B)2

for n � 1 and E0ν (kz ) = ν|Mzk2
z + M⊥/�2

B + � − Z| for
the Lowest Landau bands. Here, μ and ν take values of
±, v⊥ = √

vxvy, �B = √
h̄/eB, and Z = gμBB/2, where

g represents the g-factor and μB stands for the Bohr
magneton. Z represents the Zeeman energy, as we have
included a Zeeman coupling term HZ = −gμBBτzσ0/2 in
the free Hamiltonian. The normalized eigenvectors of all
Landau bands can be found and are uniformly denoted as
|nk,+(ν),+(μ)〉.

Conductivities and Nernst coefficient. In the strong-field
quantum limit where only the lowest Landau bands cross the
Fermi energy, the Nernst coefficient can be found according
to the Mott relation, which reads

Sxy = π2k2
BT

3e

∂
H

∂EF
, (3)

where the Hall angle 
H ≡ arctan(σxy/σxx ), the longitudinal,
and the Hall conductivities are found by the Kubo-Středa
formula [47] at low temperature and in the quantum limit
(Sec. SIII of the Supplemental Material [46]) as

σxx = h̄v2
⊥e2

2π2�2
B

∫
dkz

2π

∑
μ,ν=±

A0μT ν
μ A1ν, (4)

σxy = h̄v2
⊥e2

2π2�2
B

∫
dkz

2π

∑
μ,μ′=±

T ν
μ

(
A0μG1ν − G0μA1ν

)
, (5)

where A0μ = �/[(E0μ − EF )2 + �2] and A1ν = �/[(E μ̄
1ν −

EF )2 + �2] represent the spectral functions for the E0μ and
E μ̄

1ν (μ̄ = −μ) bands, respectively, and T ν
μ denotes the tran-

sition probability between these two bands. Here, T ν
μ (μν =

+) = [sin(θ/2) + γ cos(θ/2)]2 and T ν
μ (μν = −) =

[cos(θ/2) − γ sin(θ/2)]2, where γ = √
2M⊥/(h̄v⊥�B) is

a dimensionless parameter, and for θ ∈ (0, π ), cos θ =
Ed/

√
E2

d + (
√

2h̄v⊥/�B)2 with Ed = Mzk2
z + 2M⊥/�2

B + �.

G0μ = [(E0μ − EF )2 − �2]/[(E0μ − EF )2 + �2]2 and G1ν =
[(E μ̄

1ν − EF )2 − �2]/[(E μ̄
1ν − EF )2 + �2]2. Equations (4) and

(5) are derived under kBT � � to ensure the Mott relation
holds. High temperatures and inelastic electron-phonon
scattering can break the Mott relation [33–35]. For kBT � �,
phonons are frozen out, inelastic scattering is negligible, and
the Mott relation remains valid. Additionally, the quantum
limit approximation is well justified when the broadening is
much smaller than the Landau band spacing at kz = 0, which
for typical topological insulators [37,48,49] is expressed as
� � √

2h̄v⊥/�B.
Nernst plateau in weak topological insulators. By substi-

tuting the calculated conductivities [Eqs. (4) and (5)] into the
Mott relation [Eq. (3)], one can obtain the evolution of Sxy

with respect to B. For weak topological insulators, we found
that Sxy forms a field-independent plateau after a critical value
(	 BQL) [see Fig. 2(b)]. This behavior manifests under the
stringent condition of an extremely low carrier density.

For a detailed explanation of our findings, we begin by
illustrating the evolution of the lowest Landau band with B.
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FIG. 1. (a) Schematic of the previously known two types of the
Nernst effect, in terms of the dependence of the Nernst coefficient
Syx on the magnetic field at a fixed and low temperature T . (b) In
comparison, we find a Nernst plateau beyond the expectation of the
previous mechanisms, at magnetic fields far above the strong-field
quantum limit BQL (indicated by the black dashed lines), where only
the lowest Landau band is occupied by electrons.

As shown in Fig. 3(a), the two lowest Landau bands have
a gap at the quantum limit for a weak topological insulator
(M⊥, Mz > 0, and � > 0). As B increases, the E0+ band
shifts downwards while the E0− band shifts upwards. Con-
sequently, the gap between them decreases and closes at B1 =
�/(−M⊥e/h̄ + gμB/2) [see Fig. 3(b)]. As B increases further
to B2 (see Sec. SV in the Supplemental Material [46] for the
calculation of B2), which is determined by the real root of

(gμB − 2M⊥e/h̄)B3
2 − 2�B2

2 − Mz(πhn0/e)2 = 0; (6)

the E0− band reaches the Fermi energy. Here, the carrier den-
sity is given by n0 = ∫

dkz
∑

n,μ[ f (Eμ
n+) − (1 − f (Eμ

n−))]/
4π2�2

B. Consequently, the Fermi surface in kz space undergoes
a transition from two points to three points, marking a Lifshitz
transition [50–52], which is depicted in Fig. 3(c). Figure 3(d)
illustrates that with further increase in B, the Fermi energy
approaches the Weyl points, forming an ideal 1D Weyl state.
Our calculations suggest that such an ideal 1D Weyl state
gives rise to the flat Sxy.

To calculate Sxy(B), we need to know how EF changes
with B. Typically, this can be done by keeping either EF or
the carrier density n0 constant [53,54]. When assuming n0 is
constant, as shown in Fig. 2(a), the calculated EF decreases
with increasing B before the Lifshitz transition, after which EF

becomes almost field independent. Therefore, Sxy is calculated
by keeping n0 constant before the Lifshitz transition and EF

constant after the transition. The results of Sxy(B) at T = 2 K
are plotted in Fig. 2(b), showing that Sxy rapidly decays with
increasing B before the Lifshitz transition. After the transition,
Sxy quickly saturates, forming a field-independent plateau.
Such a plateau can be analytically obtained as a result of
the ideal 1D Weyl state shown in Fig. 3(d). Due to charge
neutrality at the Weyl point, σxy = 0, and as a result,

Sxy = π2k2
BT

/
3e σ−1

xx ∂σxy
/
∂EF . (7)

Moreover, Eqs. (4) and (5) in an ideal Weyl state produce (see
Sec. SVIA in the Supplemental Material [46])

σxx = e2

πh

�

2Mzkw

,
∂σxy

∂EF
= − e2

πh

1

Mzkw

, (8)
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FIG. 2. Computed functions of EF (B), Sxy(B), Ryx (B), and Rxx (B) for weak topological insulators at T = 2 K. (a) Contour plot in the B − EF

plane for a fixed carrier density n0 of weak topological insulators. Each line represents a constant n0, and the different colors correspond to
varying values of n0, which are labeled in the right panel. (b), (d), and (e) Calculated Sxy(B), Rxy(B), and Rxx (B), respectively, for different carrier
densities labeled by the colored numbers. All plots begin at B = 1T—at the quantum limit for n0 = 4×1016/cm3, but at the second Landau
band for the other three carrier densities. (c) Calculated Sxy(B) with an n0 higher than those in (b); in this case, Sxy does not exhibit a plateau as
in (b). This plot begins in the second Landau band at 6 T. In all diagrams, we take M⊥ = −12 eV · Å2, Mz = 3eV · Å2, � = 2.5 meV, v⊥ =
5×105m/s, g = 12, and � = 2 meV. The quantum limits for n0 = (4, 8, 12, 16, 64)×1016/cm3 are B0 = 0.77, 1.32, 1.82, 2.28, and 6.81T,
respectively.

where kw = √
[(−M⊥e/h̄ + gμB/2)B − �]/Mz representing

the position of the Weyl point. Substituting Eq. (8) into Eq. (7)
yields Sxy/T = −2π2k2

B/(3e�), which corresponds to R = 1
in Eq. (1). Additionally, as shown in Sec. SVIC in the Supple-
mental Material [46], each subfigure in Fig. 3 leads to a special
point in the Nernst coefficient curve shown in Fig. 2(b).
Specifically, Fig. 3(a) leads to the peak value of the Nernst
coefficient in Fig. 2(b); Fig. 3(b) leads to the point where the
Nernst coefficient crosses zero in Fig. 2(b); and Fig. 3(c) leads
to the valley value in Fig. 2(b).

The emergence of this plateau is highly sensitive to the
carrier density n0. As shown in Fig. 2(c), when n0 is in-
creased to be 6.4×1017/cm3, no plateau appears regardless
of the magnitude of B. The main reason is that for such
an n0, the EF after the Lifshitz transition is relatively high
[see Fig. 2(a)], thus far from the ideal Weyl state. For such
a case, we have also obtained approximate result of Sxy/T
under strong magnetic field (see Sec. SVI in the Supplemental
Material [46]), which clearly demonstrates the dependence of
Sxy on B and shows that Sxy does not exhibit a plateau in strong
magnetic fields. Furthermore, Eq. (6) shows that B2 ∝ n2/3

0 ,
and Fig. 2(a) show that as n0 decreases, the Fermi energy

EF

B=B1b B=B2c

kz kzkzkz

a B=B0

E n
k z

d B=B3

E0
E0

FIG. 3. Evolution of Landau bands with increasing B at several
critical values. The red, blue, and gray lines are for the 0th Landau
bands E0+, E0− and high-index Landau bands, respectively. The
black line represents the Fermi energy EF . (a) The quantum limit
reaches at B0, where the Fermi energy touches the band bottom
of E−

1+. (b) The gap of the 0th Landau band closes at B1. (c) The
Lifshitz transition happens at B2, where EF crosses the bottom of
E0−. (d) Ideal 1D Weyl states emerge at B3, with all Weyl points
located at EF .

at B2 is closer to the 1D Weyl point, meaning B3 decreases
with n0. Therefore, the emergence of a Nernst plateau within
experimentally accessible fields requires n0 to be sufficiently
low—a condition independent of specific material details—
making our prediction highly universal.

The experimental phenomenon of the Nernst plateau bears
resemblance to that of the anomalous Nernst effect. To dis-
tinguish between them, we also computed the behaviors of
the corresponding Rxy(B) and Rxx(B). Figure 2(d) illustrates
the variation of Rxy with B, showing that Rxy does not exhibit
a plateau. This is a significant distinction between our re-
sults and the experimental phenomenon of anomalous Nernst
effect, as the plateau in anomalous Nernst effect typically
accompanies the anomalous Hall plateau [2,20,55]. Further-
more, Eq. (8) indicates that when the Sxy plateau appears, Rxx

increases with B according to
√

(−M⊥e/h̄ + gμB/2)B − �,
as shown in Fig. 2(e). Observing such behaviors of Rxx in
experiments provides additional support for validating our
plateau theory.

Nernst plateau in strong topological insulators. We will
demonstrate that the flat Nernst effect obtained in weak topo-
logical insulators also emerges in strong topological insulators
[see Fig. 4(b)], albeit requiring lower carrier concentrations
and involving distinct mechanisms. First, as shown in Fig. 5,
the evolution of Landau bands in strong topological insula-
tors behaves exactly opposite to that depicted in Fig. 3 for
weak topological insulators. For strong topological insulators
(Mz < M⊥ < 0, and � > 0), the Weyl points formed by E0+
and E0− are present in weak magnetic fields [see Fig. 5(a)]. As
B increases, E0+ moves upward, and E0− moves downward.
When reaching B1, the two Weyl points merge into one, as
shown in Fig. 5(b). Figure 5(c) illustrates that with a further
increase in B, a gap of size 2(−M⊥e/h̄ + gμB/2)(B − B1)
opens between the two 0th Landau bands.

When calculating Sxy(B) for strong topological insulators,
we always keep the carrier density n0 constant. If we keep
EF constant, the system will quickly become insulating with
increasing B because the E0+ band moves upward and the E0−
band moves downward. With n0 being constant, as shown in
Fig. 4(a), the calculated EF first decreases and then increases
almost linearly as B increases. Using the calculated EF (B)
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FIG. 4. Computed functions of EF (B), Sxy(B), Ryx (B), and Rxx (B) for strong topological insulators at T = 2 K. (a) Contour plot in the
B − EF plane for a fixed carrier density n0 of strong topological insulators. (b), (d), and (e) Calculated Sxy(B), Rxy(B), and Rxx (B), respectively,
for different carrier densities labeled by the colored numbers. All plots begin at B = 0.5 T—at the quantum limit for n0 = 0.8×1016/cm3, but
at the second Landau band for the other three carrier densities. The inset in (e) plotted Rxx (B) for B ∈ (0.5, 3) T, and the labels for the lines in
(e) are the same as those in (d). (c) Calculated Sxy(B) with an n0 higher than those in (b); in this case, Sxy is not flat even for B ∼ 100 T. This
plot begins in the second Landau band at 3 T. For all diagrams, we take M⊥ = −120 eV · Å2, Mz = −12eV · Å2. The values of �, v⊥, g, and �

are the same as those used in Fig. 2. The quantum limits for n = (0.8, 1.6, 2.4, 3.2, 10)×1016/cm3 are B0 = 0.34, 0.61, 0.86, 1.11, and 3.11 T,
respectively.

to compute the Sxy(B) yields the results shown in Fig. 4(b).
Clearly, Sxy(B) also flattens in strong magnetic fields. Com-
pared to the case of weak topological insulators shown in
Fig. 2(b), the carrier density here is nearly an order of mag-
nitude lower, and while the Nernst plateau values vary with
carrier density in weak topological insulators, they remain
constant in this case. The flat Sxy appearing here can be un-
derstood as the effect of the band bottom shown in Fig. 5(c),
which is completely different from the ideal Weyl state in the
case of weak topological insulators. Near the band bottom, σxy

is comparable to σxx. To obtain the approximate results of the
Nernst coefficient, we need to calculate the asymptotic results
of σxy, σxx, ∂σxy/∂EF , and ∂σxx/∂EF separately. The detailed
calculations are presented in Sec. SVIB in the Supplemental
Material [46], and the approximate results are as follows:

σxx = e2

πh

√
�

4
√

2|Mz|
,

∂σxx

∂EF
= e2

πh

1

8
√

2|Mz|�
, (9)

σxy = − e2

πh

√
�

2
√

2|Mz|
,

∂σxy

∂EF
= − e2

πh

3

4
√

2|Mz|�
. (10)

The asymptotic value of the Nernst coefficient is Sxy/T =
−2π2k2

B/(15e�), i.e., the result for R = 5 in Eq. (1), which
exactly gives the value of the plateau in Fig. 4(b) when � =
2 meV. Experimentally observing the plateau requires a low

EFE0

E0

E n
k z

kzkz

B=B1b

kz

B>B1c
a B=B0

FIG. 5. Evolution of Landau bands for a strong topological in-
sulator under selected magnetic fields. The labels of the lines are
the same as those in Fig. 3. (a) The quantum limit reaches at B0.
(b) Two Weyl points merge into one at B1. (c) The gap between two
0th Landau bands opens after B1, and as B increases, EF gradually
pushes to the band bottom.

density. As shown in Fig. 4(c), when n = 6.4×1016/cm3, no
plateau appears even at magnetic fields as high as 80 T, a
value exceeding the limit of steady magnetic fields achievable
in current experiments.

To distinguish the flat Nernst effect in strong topological
insulators from the case in weak topological insulators and the
anomalous Nernst behavior, we calculated Rxy(B) and Rxx(B),
which are shown in Figs. 4(d) and 4(e), respectively. Clearly,
Rxy(B) and Rxx(B) also become flat under strong magnetic
fields, and the values of the plateaus can be obtained through
σxx and σxy in Eqs. (9) and (10), respectively. Simultaneous
saturation of Rxy(B) and Rxx(B) is rare in topological insula-
tors but was recently observed in ZrTe5 [56,57].

Experimental observations. So far, only a few experiments
have observed the Nernst plateau in the quantum limit. Recent
experiments in HfTe5 [58] have observed Nernst plateaus in
magnetic fields ranging from 15 T to 32 T (BQL ∼ 1.5 T), and
the measured Rxx fits well with

√
B when the Nernst plateau

appears. Given that recent infrared magneto-optical experi-
ments have identified HfTe5 as a weak topological insulator
[42], and that our model Eq. (2) and the parameters in Fig. 2
also apply to HfTe5, we believe that the experimental results
in [58] support our Nernst plateau theory for weak topological
insulators. For the case of strong topological insulators, we
think that the Nernst plateau observed earlier in ZrTe5 [59]
can be explained by our theory. First, our model Eq. (2) and
the parameters in Fig. 4 apply to ZrTe5 [38,60]. Second, the
carrier density (hole) is very low, leading to BQL ∼ 0.3 T
[59,61,62], while the observed Nernst plateau appears in the
3–6 T range, which is well beyond the quantum limit.

We anticipate that more experiments reporting this phe-
nomenon in other typical topological insulators such as
Bi2Se3, Bi2Te3, and Sb2Te3[37,48,49]. For these materials,
the Hamiltonian includes an additional term, (C + Dzk2

z +
D⊥k2

⊥)I4×4. This term breaks the electron-hole symmetry, re-
sulting in different masses for the lowest electron and hole
Landau bands, but does not affect the existence of the Nernst
plateau given by Eq. (1) (see Sec. SVIII in the Supplemen-
tal Material [46]). However, the challenge in observing the
Nernst plateau in these materials is engineering a sufficiently
low n0.
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Discussion. In our calculations, we assumed � to be field
independent, as supported by previous studies [63–66]. Since
the Nernst plateau value is proportional to 1/�, we confirmed
� remains field independent by calculating it using the Born
approximation with Gaussian disorder [67–70]. Details are
in Sec. SVII in the Supplemental Material [46]. The results
show that both strong and weak topological insulators can
have a field-independent � when the Nernst plateau appears.
The Nernst plateau value is approximately inversely propor-
tional to impurity density. Reducing the impurity density
allows the Nernst plateau value predicted by our theory to
surpass the current record, albeit constrained by an upper
limit (see Sec. SVIIC in the Supplemental Material [46]),
thereby significantly improving thermoelectric conversion
efficiency.
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