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ABSTRACT

The exploration of the Riemannian structure of the Hilbert space has given rise to the concept of quantum geometry, comprising geometric
quantities exemplified by Berry curvature and quantum metric. While this framework has profoundly advanced our understanding of various
electronic phenomena, its potential for elucidating magnetic phenomena has remained less explored. In this Perspective, we highlight how
quantum geometry paves a new way for understanding magnetization within a single-particle framework. We first elucidate the geometric
origin of equilibrium magnetization in the modern theory of magnetization, then discuss the role of quantum geometry in kinetic magnetiza-

tion, and finally outline promising future directions at the frontier of quantum geometric magnetization.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0310234

I. INTRODUCTION

Quantum geometry has emerged as a universal language, bridg-
ing the microscopic world of wave functions and the macroscopic
world of physical phenomena.' ” This framework centers on Berry
curvature and quantum metric as its fundamental components, under-
pinning a broad spectrum of manifestations in condensed matter sys-
tems.” " In flatband superconductors, the superfluid weight is
governed by the Brillouin zone integral of quantum metric.” " In frac-
tional Chern insulators, the stability of the topological phase is cru-
cially based on nearly uniform distributions of Berry curvature and
quantum metric throughout the Brillouin zone."* ' In the quantum
anomalous Hall effect, the Chern number is explicitly defined by the
integral of the Berry curvature of the occupied bands.'”*' In nonlinear
transport,”” >’ the nonlinear electrical conductivity can be determined
by the dipole of Berry curvature or quantum metric.”’ >

The transformative role of quantum geometry in understanding
electronic phenomena naturally leads to a fundamental question: Can

this geometric perspective provide an equally powerful framework for
magnetic phenomena? Magnetization, one of the oldest and most
ubiquitous phenomena, has captivated scientific curiosity for millen-
nia, but its microscopic origin has constituted a long-standing chal-
lenge in condensed matter physics.”>”” Fortunately, quantum
geometry provides the essential language to bridge this gap at a single-
particle level, offering a theoretical framework connecting magnetic
moments to various geometric quantities. In this Perspective, we first
revisit the modern theory of magnetization to demonstrate its geomet-
ric foundations. We then highlight recent progress, with special
emphasis on kinetic magnetization and its geometric interpretation.
Finally, we provide an outlook on the emerging opportunities and
open questions in the intriguing field of magnetization.

Il. MODERN THEORY OF MAGNETIZATION

Magnetization in general originates from two intrinsic degrees of
freedom: spin and orbital.

Appl. Phys. Lett. 128, 010501 (2026); doi: 10.1063/5.0310234
Published under an exclusive license by AIP Publishing

128, 010501-1

¥5:82:G1 920z Asenuer G0


https://doi.org/10.1063/5.0310234
https://doi.org/10.1063/5.0310234
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0310234
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0310234&domain=pdf&date_stamp=2026-01-05
https://orcid.org/0000-0002-8377-5666
https://orcid.org/0000-0002-3406-3056
mailto:luhz@sustech.edu.cn
https://doi.org/10.1063/5.0310234
pubs.aip.org/aip/apl

Applied Physics Letters

In isolated atoms or molecules, magnetization (i.e., magnetic
moment per unit volume) cannot be well defined, but both the spin
and orbital magnetic moments (respectively, denoted as m® and m®)
can be expressed in terms of the spin and orbital angular momenta
(respectively, denoted as S and L) as m® = —uu(S/h) and m°
= —ug(L/h),">*" where up is the Bohr magneton and 7 is the reduced
Planck constant.

In crystalline materials, the definition of spin and orbital magneti-
zation becomes more subtle, as electrons are characterized by Bloch
waves, and correlation effects can start to manifest.”” " In this
Perspective, we restrict our scope to a single-particle framework. The
spin magnetization now requires summing over all occupied electronic
states and reads

MS = —:—; (nK|S|nK)fy, )
nk

where 7 is the volume of the material under consideration, |nk)
denotes the unit-cell-periodic state with band index n and crystal
momentum k, and fo = fo(&ux) is the Fermi-Dirac distribution func-
tion evaluated at the band energy ¢,. On the other hand, due to
quenching of the intra-atomic orbital magnetic moment by the crystal
field," " a major challenge arises when searching for orbital magneti-
zation, because the position operator r cannot be well defined, which
in turn makes the orbital angular momentum and thus the orbital
magnetic moment ill-defined. This conceptual difficulty persisted for
nearly a century until it was finally resolved in recent decades.

Two complementary approaches™’ > have been developed to
overcome this difficulty. On the one hand, the problem can be refor-
mulated with Wannier functions, whose strong real-space localization
naturally leads to a well-defined position operator.”””” On the other
hand, Bloch waves can be reorganized into a wave packet, whose cen-
ter helps regularize the definition of position operator and thus enables
the calculation of various physical observables.” °*”* As the two
approaches are in essence equivalent, we choose to illustrate the mod-
ern understanding of orbital magnetization with the wave packet
formulation.

The wave packet of the nth band can be constructed from the
corresponding Bloch states |1}, ) = e*T|nk) as™***

W) = jdkw(kwng, @)

where the weight w(k) satisfies |w(k)|* ~ d(k — k.) with k, labeling
the central momentum of the wave packet. Within this formulation,
the expectation of the position operator r. = (W, |r|W,,) converges,
marking the positional center of the nth wave packet. The orbital
magnetic moment for the nth band m® = —(e/2)(W,|(r — 1)
x t|W,) with electron charge —e then becomes well-defined, and
can be pictorially understood as the self-rotation of the wave
packet™”" (Fig. 1). In a more practical way, the orbital magnetic
moment can be rewritten as

m? =%Im(8kn\ X (A — &2)|0kn), 3)

where # is the Hamiltonian of the material under consideration, and
&n = &nx and |n) = |nk) are adopted for transparency.

To better understand the geometric origin of the orbital magnetic
moment, it would be inspiring to compare the orbital magnetic
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FIG. 1. Wave packet self-rotation as the microscopic origin of orbital magnetic
moment. The black and blue arrows indicate self-rotation and the resulting magneti-
zation, respectively.

moment tensor with the Berry curvature tensor. Their expressions are
as follows:”

oij _ ¢ (n|0yA | m)(m|0; A |n)
7= 7ﬁ1mz

n s
&n — &m

m#n

QZ = —2Im Zm#n

(4)
(n| 0. |\ m) (m|0; A |n)

(&n — 5M)2

)

which are respectively related to their vector forms through m9*
= e,-jkmg"'] and Qﬁ = e,-ijZ with ¢ being the Levi-Civita symbol. It
is worth noting that the orbital magnetic moment tensor only differs
from the Berry curvature tensor by a coefficient and a band normaliza-
tion. The formal similarity of their expressions implies an intrinsic
quantum geometric nature of the orbital magnetic moment.

As a concrete example, we consider the two-dimensional massive
Dirac model,”” whose Hamiltonian is given by # = v(kco, + kya,)
+ ma, with v and m being the model parameters. According to Eq.
(4), the Berry curvature of the conduction band reads””"** Qﬁr
= —mv?/(2d) with d = (v*k* + m?)"/?, while the orbital magnetic
moment reads m{* = —emv?/(2hd?) = edQ /h, implying that the
orbital magnetic moment is an inherently geometric quantity.

The quantum geometric origin of the orbital magnetic moment
strongly suggests a profound geometric nature of the orbital magneti-
zation, whose expression reads”

o_1 op € _
M _n/%mnfo hWnZk:Q"ln(l fo)- (5)

The first term of Eq. (5) is a summation of the orbital magnetic
moment m® weighted by the distribution function f;, analogous to
the expression of the spin magnetization [Eq. (1)]. More pro-
foundly, an additional geometric correction emerges. These two
contributions form the foundation of the modern theory of orbital
magnetization,” " highlighting the quantum geometric nature
of orbital magnetization.

lll. KINETIC MAGNETIZATION

In time-reversal-symmetric systems, equilibrium spin and orbital
magnetization [Eqgs. (1) and (5)] vanish identically. However, an exter-
nal electric field E can drive the system out of equilibrium, giving rise
to a correction in the distribution function,’”°! f =ew,- Efo’, where
7 is the relaxation time, v, = dké,/Fi is the group velocity, and
fo = 9fo/(0ey). Such a nonequilibrium correction then induces a net
magnetization known as the extrinsic kinetic magnetization.
Furthermore, in systems where time-reversal symmetry is broken, the
electric field can directly couple to quantum geometric properties of
the electronic states, giving rise to an intrinsic kinetic magnetization.
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Both effects can be generally expressed as 0M = aF, with a being the
response tensor.

A. Spin contribution

In the presence of time-reversal symmetry, the electric-field-
induced kinetic spin magnetization can be readily evaluated by replac-
ing fy with f; in Eq. (1). Explicitly, it reads

SMSe = —% (n|S|n)v,, - Ef.. )
nk

This prominent example was proposed by Edelstein,”” who showed

that an applied electric field generates spin magnetization/accumula-

tion in systems with strong spin-orbit coupling. This phenomenon,

now widely known as the spin Edelstein effect, plays an indispensable

role in spintronics.”’

We note that the above discussion is formulated within the
relaxation-time approximation, where extrinsic contributions are
treated at the level of a constant relaxation time 7. Beyond this simpli-
fied framework, more intricate scattering mechanisms, such as skew
scattering and side jump, are known to play essential roles in the
anomalous Hall effect” and the spin Hall effect.”” These mechanisms
may give rise to additional contributions for kinetic spin magnetiza-
tion. A recent theoretical study”® has explored such possibilities, point-
ing to a richer landscape of scattering-induced spin magnetization.

When time-reversal symmetry is further broken, an additional
kinetic spin magnetization emerges geometrically as”’ "

oM = — BN @, - Bf, %
- 2 O

where @, is the spin Berry curvature tensor with components

®) = —2Im > mtn (1[Si|m) (m|0; A |n) [ (e — &n)’. In contrast to

that arising from the Edelstein effect, this kinetic spin magnetization is

purely intrinsic (i.e., independent of 7).

The kinetic spin magnetization arising from the Edelstein effect
as well as the geometric mechanism has been experimentally observed
in a variety of materials, including B-Ta,”" (Ga,Mn)As,”” Bi,Ses;,””
-Sn,”* and Mn3Sn.”” It is important to note that in many of these
heavy metals and topological materials, the bulk kinetic spin magneti-
zation often coexists with the boundary spin accumulation arising
from the spin Hall effect.”>”*”® Disentangling these two contributions,
bulk magnetization vs boundary accumulation, remains a subtle but
critical aspect in both experiment and theory.

B. Orbital contribution

Unlike kinetic spin magnetization, kinetic orbital magnetization
can emerge via a route completely free of spin-orbit coupling,”’” **
because the orbital motion of electrons itself carries magnetic
moments. This establishes the foundation for electrically manipulating
and controlling the orbital degree of freedom (i.e., orbitronics).”” **

In time-reversal-symmetric systems, the kinetic orbital magneti-
zation can be obtained in direct analogy to OMS#* [Eq. (6)] as

oMo =% Zmnvn Ef;, ®)

where the Fermi-Dirac distribution function f; in Eq. (5) is replaced
by the nonequilibrium correction f;, which is also referred to as the

PERSPECTIVE pubs.aip.org/aip/apl

orbital Edelstein effect.”” This extrinsic kinetic orbital magnetization
can be understood as a population imbalance in momentum space
[Fig. 2(a)]. Specifically, the orbital magnetic moments of time-reversal-
related wave packets cancel out in equilibrium, while an electric field
can shift the Fermi surface, thereby generating a finite kinetic orbital
magnetization [Eq. (8)]. We emphasize that the extrinsic kinetic orbital
magnetization discussed here is restricted to the relaxation-time
approximation. More intricate scattering mechanisms may provide
additional extrinsic contributions to the kinetic orbital magnetization,
warranting to be further explored.

When time-reversal symmetry is further broken, there emerges a
purely intrinsic kinetic orbital magnetization, analogous to M
[Eq. (7)]. Wave packet dynamics’*® °* has revealed this kinetic mag-
netization as

SMO = Z F, - Efy. 9)
In Eq. (9), F,, is the magnetoelectric tensor with its entries being
B mtof e .
i _ Dom™mn - © g 5
Fi = —2Re S = pendg, (10)

m#n

where .o/,,, = (m|idk|n) is the interband Berry connection, m,,,
=<3 n (Vi + OmVy) X o/, is the interband orbital magnetic
moment, and g, =Re )" 4n oy i 1 the quantum metric tensor.
In addition to wave packet dynamics, this intrinsic orbital kinetic
orbital magnetization has also been explored by using the response
theory.””" Physically, the intrinsic contribution arises from the distor-
tion of the wave packet itself [Fig. 2(b)]. To be specific, the electric field
directly modifies the self-rotation of the wave packet, thereby generat-
ing a finite kinetic orbital magnetization that is intrinsic to the band
structure [Eq. (9)].

Kinetic orbital magnetization from the Edelstein effect has been
experimentally observed in monolayer MoS,” and twisted bilayer gra-
phene,” while its intrinsic counterpart requires further experimental
exploration. Parallel to the spin case, the kinetic orbital magnetization
typically coexists with the orbital accumulation driven by the orbital
Hall effect.”””"'"* A recent work'"” also has highlighted the importance
of extrinsic scattering mechanisms in the orbital Hall effect. Therefore,
disentangling the bulk orbital magnetization from the boundary contri-
bution of the orbital Hall effect remains a significant challenge.

(a) f{5MO exr
Electric field U

(b) |
Electric field féMQm
T

FIG. 2. Microscopic mechanisms of kinetic orbital magnetization. (a) Extrinsic
kinetic orbital magnetization SM°* arising from population imbalance. (b) Intrinsic
kinetic orbital magnetization SM®" arising from deformation of the wave packet.
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IV. CHALLENGES AND OUTLOOK

Magnetization is one of the most fundamental phenomena in
condensed matter physics, yet its complete microscopic understanding
has remained a long-standing challenge. Quantum geometry offers a
paradigm shift, providing profound insights by revealing equilibrium
and kinetic magnetization as a direct manifestation of the geometric
structure of the electronic Hilbert space.

First, despite its conceptual elegance, the current quantum geo-
metric framework is essentially a single-particle picture. In contrast,
magnetization in real materials is often deeply associated with local
electron interactions and correlation effects. Establishing a deeper con-
nection between quantum geometry and correlated electron systems,
or developing a geometric framework capable of addressing genuine
many-body effects, represents an exciting frontier for future
exploration.

Second, within the current quantum geometric framework, spin
and orbital magnetization are characterized by distinct quantum geo-
metric quantities. However, experimentally disentangling their individ-
ual contributions to the total magnetization remains highly nontrivial.
The lack of reliable experimental platforms for this spin-orbital separa-
tion poses a major obstacle for direct quantitative comparison with
theoretical predictions.

Third, extending the concept of kinetic magnetization into
the nonlinear regime could be particularly promising. In this
regime, magnetization scales quadratically with the applied electric
field (i.e., M o< EE), enabling finite responses even in centrosym-
metric systems where linear kinetic magnetization is strictly for-
bidden. This can significantly broaden the range of potential
material platforms harboring kinetic magnetization. Recent theo-
retical advances have predicted nonlinear kinetic spin magnetiza-
tion governed by specific quantum-geometric quantities,'** "
while the understanding of nonlinear kinetic orbital magnetization
remains largely unexplored. In contrast, experimental investiga-
tions of nonlinear kinetic magnetization are still scarce, with recent
progress reported in WTe,.'"”

In summary, the quantum geometric perspective provides a fun-
damental understanding of magnetic phenomena by revealing that
magnetization emerges naturally from the geometric structure of
quantum states. We anticipate that the theoretical advances and exper-
imental developments discussed in this Perspective will establish a
solid foundation for future explorations and practical applications in
spintronics and orbitronics.
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